Accès gratuit
Numéro
Méd. Intensive Réa.
Volume 28, Numéro 6, Novembre-Décembre 2019
Néphrologie et métabolisme
Page(s) 481 - 502
Section Recommandations / Recommendation
DOI https://doi.org/10.3166/rea-2019-0126
Publié en ligne 13 décembre 2019
  • Kimmoun A, Novy E, Auchet T, et al (2015) Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care 19:175 [CrossRef] [PubMed] [Google Scholar]
  • Kraut JA, Madias NE (2012) Treatment of acute metabolic acidosis: a pathophysiologic approach. Nat Rev Nephrol 8:589–601 [CrossRef] [PubMed] [Google Scholar]
  • Kraut JA, Madias NE (2010) Metabolic acidosis: pathophysiology, diagnosis and management. Nat Rev Nephrol 6:274–85 [CrossRef] [PubMed] [Google Scholar]
  • Jung B, Martinez M, Claessens YE, et al (2019) Diagnostic et prise en charge de l’acidose métabolique. Ann. Fr. Med. Urgence 9(6):399-420 [Google Scholar]
  • Jung B, Martinez M, Claessens YE, et al (2019) Diagnosis and management of metabolic acidosis: guidelines from a French expert panel. Ann Intensive Care 9:[in press] [Google Scholar]
  • Asch MJ, Dell RB, Williams GS, et al (1969) Time course for development of respiratory compensation in metabolic acidosis. J Lab Clin Med 73:610–5 [PubMed] [Google Scholar]
  • Fulop M (1997) A guide for predicting arterial CO2 tension in metabolic acidosis. Am J Nephrol 17:421–24 [CrossRef] [PubMed] [Google Scholar]
  • Batlle D, Chin-Theodorou J, Tucker BM (2017) Metabolic acidosis or respiratory alkalosis? Evaluation of a low plasma bicarbonate using the urine anion gap. Am J Kidney Dis 70:440–4 [CrossRef] [PubMed] [Google Scholar]
  • Bloom BM, Grundlingh J, Bestwick JP, Harris T (2014) The role of venous blood gas in the emergency department: a systematic review and meta-analysis. Eur J Emerg Med 21:81–8 [CrossRef] [PubMed] [Google Scholar]
  • Ma OJ, Rush MD, Godfrey MM, Gaddis G (2003) Arterial blood gas results rarely influence emergency physician management of patients with suspected diabetic ketoacidosis. Acad Emerg Med 10:836–41 [CrossRef] [PubMed] [Google Scholar]
  • Arnold TDW, Miller M, van Wessem KP, et al (2011) Base deficit from the first peripheral venous sample: a surrogate for arterial base deficit in the trauma bay. J Trauma 71:793–7 [CrossRef] [PubMed] [Google Scholar]
  • Zakrison T, McFarlan A, Wu YY, et al (2013) Venous and arterial base deficits: do these agree in occult shock and in the elderly? A Bland-Altman analysis. J Trauma Acute Care Surg 74:936–9 [CrossRef] [PubMed] [Google Scholar]
  • Herrington WG, Nye HJ, Hammersley MS, Watkinson PJ (2012) Are arterial and venous samples clinically equivalent for the estimation of pH, serum bicarbonate and potassium concentration in critically ill patients? Diabet Med J 29:32–5 [CrossRef] [PubMed] [Google Scholar]
  • Surbatovic M, Radakovic S, Jevtic M, et al (2009) Predictive value of serum bicarbonate, arterial base deficit/excess and SAPS III score in critically ill patients. Gen Physiol Biophys 28:271–6 [Google Scholar]
  • Martin MJ, FitzSullivan E, Salim A, et al (2005) Use of serum bicarbonate measurement in place of arterial base deficit in the surgical intensive care unit. Arch Surg 140:745–51 [Google Scholar]
  • FitzSullivan E, Salim A, Demetriades D, et al (2005) Serum bicarbonate may replace the arterial base deficit in the trauma intensive care unit. Am J Surg 190:941–6 [CrossRef] [PubMed] [Google Scholar]
  • Chawla LS, Jagasia D, Abell LM, et al (2008) Anion gap, anion gap corrected for albumin, and base deficit fail to accurately diagnose clinically significant hyperlactatemia in critically ill patients. J Intensive Care Med 23:122–7 [CrossRef] [PubMed] [Google Scholar]
  • Dinh CH, Ng R, Grandinetti A, et al (2006) Correcting the anion gap for hypoalbuminaemia does not improve detection of hyperlactataemia. Emerg Med J 23:627–9 [Google Scholar]
  • Moviat M, van Haren F, van der Hoeven H (2003) Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care 7:R41-5 [CrossRef] [PubMed] [Google Scholar]
  • Mallat J, Michel D, Salaun P, et al (2012) Defining metabolic acidosis in patients with septic shock using Stewart approach. Am J Emerg Med 30:391–8 [Google Scholar]
  • Chawla LS, Shih S, Davison D, et al (2008) Anion gap, anion gap corrected for albumin, base deficit and unmeasured anions in critically ill patients: implications on the assessment of metabolic acidosis and the diagnosis of hyperlactatemia. BMC Emerg Med 8:18 [CrossRef] [PubMed] [Google Scholar]
  • Dubin A, Menises MM, Masevicius FD, et al (2007) Comparison of three different methods of evaluation of metabolic acid-base disorders. Crit Care Med 35:1264–70 [CrossRef] [PubMed] [Google Scholar]
  • Story DA, Poustie S, Bellomo R (2002) Estimating unmeasured anions in critically ill patients: anion-gap, base-deficit, and strong-ion-gap. Anaesthesia 57:1109–14 [CrossRef] [PubMed] [Google Scholar]
  • Balasubramanyan N, Havens PL, Hoffman GM (1999) Unmeasured anions identified by the Fencl-Stewart method predict mortality better than base excess, anion gap, and lactate in patients in the pediatric intensive care unit. Crit Care Med 27:1577–81 [CrossRef] [PubMed] [Google Scholar]
  • Lautrette A, Fejjal M, Aithssain A, et al (2013) Comparison of three methods of diagnosis of plasma unmeasured anions in critically ill patients. Minerva Anestesiol 79:1164–72 [Google Scholar]
  • Boniatti MM, Cardoso PRC, Castilho RK, Vieira SRR (2009) Acid-base disorders evaluation in critically ill patients: we can improve our diagnostic ability. Intensive Care Med 35:1377–82 [CrossRef] [PubMed] [Google Scholar]
  • Nanji AA, Campbell DJ, Pudek MR (1981) Decreased anion gap associated with hypoalbuminemia and polyclonal gammopathy. JAMA 246:859–60 [CrossRef] [PubMed] [Google Scholar]
  • Figge J, Jabor A, Kazda A, Fencl V (1998) Anion gap and hypoalbuminemia. Crit Care Med 26:1807–10 [CrossRef] [PubMed] [Google Scholar]
  • Fencl V, Jabor A, Kazda A, Figge J (2000) Diagnosis of metabolic acid-base disturbances in critically ill patients. Am J Respir Crit Care Med 162:2246–51 [CrossRef] [PubMed] [Google Scholar]
  • Kraut JA, Madias NE (2012) Differential diagnosis of nongap metabolic acidosis: value of a systematic approach. Clin J Am Soc Nephrol 7:671–9 [CrossRef] [PubMed] [Google Scholar]
  • Adrogué HJ, Madias NE (2016) Assessing acid-base status: physiologic versus physicochemical approach. Am J Kidney Dis 68:793–802 [CrossRef] [PubMed] [Google Scholar]
  • Tuhay G, Pein MC, Masevicius FD, et al (2008) Severe hyperlactatemia with normal base excess: a quantitative analysis using conventional and Stewart approaches. Crit Care 12:R66 [CrossRef] [PubMed] [Google Scholar]
  • Guérin C, Nesme P, Leray V, et al (2010) Quantitative analysis of acid-base disorders in patients with chronic respiratory failure in stable or unstable respiratory condition. Respir Care 55:1453–63 [Google Scholar]
  • Magder S, Emami A (2015) Practical approach to physical-chemical acid-base management. Stewart at the bedside. Ann Am Thorac Soc 12:111–7 [CrossRef] [PubMed] [Google Scholar]
  • Galbois A, Ait-Oufella H, Baudel JL, et al (2009) An adult can still die of salicylate poisoning in France in 2008. Intensive Care Med 35:1999 [CrossRef] [PubMed] [Google Scholar]
  • Pernet P, Bénéteau-Burnat B, Vaubourdolle M, et al (2009) False elevation of blood lactate reveals ethylene glycol poisoning. Am J Emerg Med 27:132.e1–2 [Google Scholar]
  • Adrogué HJ, Wilson H, Boyd AE, et al (1982) Plasma acid-base patterns in diabetic ketoacidosis. N Engl J Med 307:1603–10 [Google Scholar]
  • Richardson RM, Halperin ML (1987) The urine pH: a potentially misleading diagnostic test in patients with hyperchloremic metabolic acidosis. Am J Kidney Dis 10:140–3 [CrossRef] [PubMed] [Google Scholar]
  • Kraut JA, Mullins ME (2018) Toxic Alcohols. N Engl J Med 378:270–80 [Google Scholar]
  • Noritomi DT, Soriano FG, Kellum JA, et al (2009) Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study. Crit Care Med 37:2733–9 [CrossRef] [PubMed] [Google Scholar]
  • Rastegar M, Nagami GT (2017) Non-anion gap metabolic acidosis: a clinical approach to evaluation. Am J Kidney Dis 69:296–301 [CrossRef] [PubMed] [Google Scholar]
  • Kim HY, Han JS, Jeon US, et al (2001) Clinical significance of the fractional excretion of anions in metabolic acidosis. Clin Nephrol 55:448–52 [PubMed] [Google Scholar]
  • Batlle DC, Hizon M, Cohen E, et al (1988) The use of the urinary anion gap in the diagnosis of hyperchloremic metabolic acidosis. N Engl J Med 318:594–9 [Google Scholar]
  • Brunner R, Drolz A, Scherzer TM, et al (2015) Renal tubular acidosis is highly prevalent in critically ill patients. Crit Care 19:148 [CrossRef] [PubMed] [Google Scholar]
  • Guyette FX, Meier EN, Newgard C, et al (2015) A comparison of prehospital lactate and systolic blood pressure for predicting the need for resuscitative care in trauma transported by ground. J Trauma Acute Care Surg 78:600–6 [CrossRef] [PubMed] [Google Scholar]
  • Contenti J, Corraze H, Lemoël F, Levraut J (2015) Effectiveness of arterial, venous, and capillary blood lactate as a sepsis triage tool in ED patients. Am J Emerg Med 33:167–72 [Google Scholar]
  • Musikatavorn K, Thepnimitra S, Komindr A, et al (2015) Venous lactate in predicting the need for intensive care unit and mortality among nonelderly sepsis patients with stable hemodynamic. Am J Emerg Med 33:925–30 [Google Scholar]
  • Barfod C, Lundstrøm LH, Lauritzen MMP, et al (2015) Peripheral venous lactate at admission is associated with in-hospital mortality, a prospective cohort study. Acta Anaesthesiol Scand 59:514–23 [CrossRef] [PubMed] [Google Scholar]
  • Bouzat P, Schilte C, Vinclair M, et al (2016) Capillary lactate concentration on admission of normotensive trauma patients: a prospective study. Scand J Trauma Resusc Emerg Med 24:82 [CrossRef] [PubMed] [Google Scholar]
  • Gaieski DF, Drumheller BC, Goyal M, et al (2013) Accuracy of Handheld Point-of-Care Fingertip Lactate Measurement in the Emergency Department. West J Emerg Med 14:58–62 [CrossRef] [PubMed] [Google Scholar]
  • Kim C, Kim H (2018) Emergency medical technician-performed point-of-care blood analysis using the capillary blood obtained from skin puncture. Am J Emerg Med 36:1215–21 [Google Scholar]
  • Collange O, Garcia V, Kindo M, et al (2017) Comparison of capillary and arterial lactate levels in patients with shock. Anaesth Crit Care Pain Med 36:157–62 [CrossRef] [PubMed] [Google Scholar]
  • Seoane L, Papasidero M, De Sanctis P, et al (2013) Capillary lactic acid validation in an ED. Am J Emerg Med 31:1365–7 [Google Scholar]
  • Tanner RK, Fuller KL, Ross MLR (2010) Evaluation of three portable blood lactate analysers: Lactate Pro, Lactate Scout and Lactate Plus. Eur J Appl Physiol 109:551–9 [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Manzon C, Barrot L, Besch G, et al (2015) Capillary lactate as a tool for the triage nurse among patients with SIRS at emergency department presentation: a preliminary report. Ann Intensive Care 5:7 [CrossRef] [PubMed] [Google Scholar]
  • Kraut JA, Madias NE (2014) Lactic acidosis. N Engl J Med 371:2309–19 [Google Scholar]
  • Vernon C, Letourneau JL (2010) Lactic acidosis: recognition, kinetics, and associated prognosis. Crit Care Clin 26:255–83 [Google Scholar]
  • Blohm E, Lai J, Neavyn M (2017) Drug-induced hyperlactatemia. Clin Toxicol 55:869–78 [CrossRef] [PubMed] [Google Scholar]
  • Suetrong B, Walley KR (2016) Lactic acidosis in sepsis: it’s not all anaerobic: implications for diagnosis and management. Chest 149:252–61 [CrossRef] [PubMed] [Google Scholar]
  • Laffel LMB, Wentzell K, Loughlin C, et al (2006) Sick day management using blood 3-hydroxybutyrate (3-OHB) compared with urine ketone monitoring reduces hospital visits in young people with T1DM: a randomized clinical trial. Diabet Med J 23:278–84 [CrossRef] [PubMed] [Google Scholar]
  • Taboulet P, Deconinck N, Thurel A, et al (2007) Correlation between urine ketones (acetoacetate) and capillary blood ketones (3-beta-hydroxybutyrate) in hyperglycaemic patients. Diabetes Metab 33:135–9 [CrossRef] [PubMed] [Google Scholar]
  • Voulgari C, Tentolouris N (2010) The performance of a glucose-ketone meter in the diagnosis of diabetic ketoacidosis in patients with type 2 diabetes in the emergency room. Diabetes Technol Ther 12:529–35 [CrossRef] [PubMed] [Google Scholar]
  • Arora S, Henderson SO, Long T, Menchine M (2011) Diagnostic accuracy of point-of-care testing for diabetic ketoacidosis at emergency-department triage: beta-hydroxybutyrate versus the urine dipstick. Diabetes Care 34:852–4 [CrossRef] [PubMed] [Google Scholar]
  • Charles RA, Bee YM, Eng PHK, Goh SY (2007) Point-of-care blood ketone testing: screening for diabetic ketoacidosis at the emergency department. Singapore Med J 48:986–9 [PubMed] [Google Scholar]
  • Kuru B, Sever M, Aksay E, et al (2014) Comparing finger-stick β-hydroxybutyrate with dipstick urine tests in the detection of ketone bodies. Turk J Emerg Med 14:47–52 [Google Scholar]
  • Shin J, Lim YS, Kim K, et al (2017) Initial blood pH during cardiopulmonary resuscitation in out-of-hospital cardiac arrest patients: a multicenter observational registry-based study. Crit Care 21:322 [CrossRef] [PubMed] [Google Scholar]
  • Spindelboeck W, Gemes G, Strasser C, et al (2016) Arterial blood gases during and their dynamic changes after cardiopulmonary resuscitation: a prospective clinical study. Resuscitation 106:24–9 [CrossRef] [PubMed] [Google Scholar]
  • Denton R, Thomas AN (1997) Cardiopulmonary resuscitation: a retrospective review. Anaesthesia 52:324–7 [CrossRef] [PubMed] [Google Scholar]
  • Kaplan LJ, Kellum JA (2004) Initial pH, base deficit, lactate, anion gap, strong ion difference, and strong ion gap predict outcome from major vascular injury. Crit Care Med 32:1120–4 [CrossRef] [PubMed] [Google Scholar]
  • Fine MJ, Auble TE, Yealy DM, et al (1997) A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 336:243–50 [Google Scholar]
  • Renaud B, Labarère J, Coma E, et al (2009) Risk stratification of early admission to the intensive care unit of patients with no major criteria of severe community-acquired pneumonia: development of an international prediction rule. Crit Care 13:R54 [CrossRef] [PubMed] [Google Scholar]
  • Shapiro NI, Howell MD, Talmor D, et al (2005) Serum lactate as a predictor of mortality in emergency department patients with infection. Ann Emerg Med 45:524–8 [CrossRef] [PubMed] [Google Scholar]
  • Casserly B, Phillips GS, Schorr C, et al (2015) Lactate measurements in sepsis-induced tissue hypoperfusion: results from the Surviving Sepsis Campaign database. Crit Care Med 43:567–73 [CrossRef] [PubMed] [Google Scholar]
  • Park YJ, Kim DH, Kim SC, et al (2018) Serum lactate upon emergency department arrival as a predictor of 30-day in-hospital mortality in an unselected population. PloS One 13:e0190519 [CrossRef] [PubMed] [Google Scholar]
  • Puskarich MA, Kline JA, Summers RL, Jones AE (2012) Prognostic value of incremental lactate elevations in emergency department patients with suspected infection. Acad Emerg Med 19:983–5 [CrossRef] [PubMed] [Google Scholar]
  • Raux M, Le Manach Y, Gauss T, et al (2017) Comparison of the prognostic significance of initial blood lactate and base deficit in trauma patients. Anesthesiology 126:522–33 [PubMed] [Google Scholar]
  • Régnier MA, Raux M, Le Manach Y, et al (2012) Prognostic significance of blood lactate and lactate clearance in trauma patients. Anesthesiology 117:1276–88 [PubMed] [Google Scholar]
  • Ryoo SM, Lee J, Lee YS, et al (2018) Lactate level versus lactate clearance for predicting mortality in patients with septic shock defined by sepsis-3. Crit Care Med 46:e489–95 [CrossRef] [PubMed] [Google Scholar]
  • Dezman ZDW, Comer AC, Smith GS, et al (2015) Failure to clear elevated lactate predicts 24-hour mortality in trauma patients. J Trauma Acute Care Surg 79:580–585 [CrossRef] [PubMed] [Google Scholar]
  • May ME, Young C, King J (1993) Resource utilization in treatment of diabetic ketoacidosis in adults. Am J Med Sci 306:287–94 [Google Scholar]
  • Moss JM (1987) Diabetic ketoacidosis: effective low-cost treatment in a community hospital. South Med J 80:875–81 [CrossRef] [PubMed] [Google Scholar]
  • Marinac JS, Mesa L (2000) Using a severity of illness scoring system to assess intensive care unit admissions for diabetic ketoacidosis. Crit Care Med 28:2238–41 [CrossRef] [PubMed] [Google Scholar]
  • Gershengorn HB, Iwashyna TJ, Cooke CR, et al (2012) Variation in use of intensive care for adults with diabetic ketoacidosis. Crit Care Med 40:2009–15 [CrossRef] [PubMed] [Google Scholar]
  • Andrade-Castellanos CA, Colunga-Lozano LE, Delgado-Figueroa N, Gonzalez-Padilla DA (2016) Subcutaneous rapid-acting insulin analogues for diabetic ketoacidosis. Cochrane Database Syst Rev 1:CD011281 [Google Scholar]
  • Vincent M, Nobécourt E (2013) Treatment of diabetic ketoacidosis with subcutaneous insulin lispro: a review of the current evidence from clinical studies. Diabetes Metab 39:299–305 [CrossRef] [PubMed] [Google Scholar]
  • Fisher JN, Shahshahani MN, Kitabchi AE (1977) Diabetic ketoacidosis: low-dose insulin therapy by various routes. N Engl J Med 297:238–41 [Google Scholar]
  • Umpierrez GE, Latif K, Stoever J, et al (2004) Efficacy of subcutaneous insulin lispro versus continuous intravenous regular insulin for the treatment of patients with diabetic ketoacidosis. Am J Med 117:291–6 [Google Scholar]
  • Umpierrez GE, Cuervo R, Karabell A, et al (2004) Treatment of diabetic ketoacidosis with subcutaneous insulin aspart. Diabetes Care 27:1873–8 [CrossRef] [PubMed] [Google Scholar]
  • Karoli R, Fatima J, Salman T, et al (2011) Managing diabetic ketoacidosis in non-intensive care unit setting: role of insulin analogs. Indian J Pharmacol 43:398–401 [CrossRef] [PubMed] [Google Scholar]
  • Kitabchi AE, Murphy MB, Spencer J, et al (2008) Is a priming dose of insulin necessary in a low-dose insulin protocol for the treatment of diabetic ketoacidosis? Diabetes Care 31:2081–5 [CrossRef] [PubMed] [Google Scholar]
  • Goyal N, Miller JB, Sankey SS, Mossallam U (2010) Utility of initial bolus insulin in the treatment of diabetic ketoacidosis. J Emerg Med 38:422–7 [CrossRef] [PubMed] [Google Scholar]
  • Page MM, Alberti KG, Greenwood R, et al (1974) Treatment of diabetic coma with continuous low-dose infusion of insulin. Br Med J 2:687–90 [CrossRef] [PubMed] [Google Scholar]
  • Semple PF, White C, Manderson WG (1974) Continuous intravenous infusion of small doses of insulin in treatment of diabetic ketoacidosis. Br Med J 2:694–8 [CrossRef] [PubMed] [Google Scholar]
  • El-Solh AA, Abou Jaoude P, Porhomayon J (2010) Bicarbonate therapy in the treatment of septic shock: a second look. Intern Emerg Med 5:341–7 [CrossRef] [PubMed] [Google Scholar]
  • Kim HJ, Son YK, An WS (2013) Effect of sodium bicarbonate administration on mortality in patients with lactic acidosis: a retrospective analysis. PloS One 8:e65283 [CrossRef] [PubMed] [Google Scholar]
  • Wilson RF, Spencer AR, Tyburski JG, et al (2013) Bicarbonate therapy in severely acidotic trauma patients increases mortality. J Trauma Acute Care Surg 74:45–50 [CrossRef] [PubMed] [Google Scholar]
  • Jung B, Rimmele T, Le Goff C, et al (2011) Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit Care 15:R238 [CrossRef] [PubMed] [Google Scholar]
  • Mathieu D, Neviere R, Billard V, et al (1991) Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med 19:1352–6 [CrossRef] [PubMed] [Google Scholar]
  • Cooper DJ, Walley KR, Wiggs BR, Russell JA (1990) Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med 112:492–8 [CrossRef] [PubMed] [Google Scholar]
  • Jaber S, Paugam C, Futier E, et al (2018) Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet 392:31–40 [CrossRef] [PubMed] [Google Scholar]
  • Weng YM, Wu SH, Li WC, et al (2013) The effects of sodium bicarbonate during prolonged cardiopulmonary resuscitation. Am J Emerg Med 31:562–5 [Google Scholar]
  • Kawano T, Grunau B, Scheuermeyer FX, et al (2017) Prehospital sodium bicarbonate use could worsen long term survival with favorable neurological recovery among patients with out-of-hospital cardiac arrest. Resuscitation 119:63–9 [CrossRef] [PubMed] [Google Scholar]
  • Kim J, Kim K, Park J, et al (2016) Sodium bicarbonate administration during ongoing resuscitation is associated with increased return of spontaneous circulation. Am J Emerg Med 34: 225–9 [Google Scholar]
  • Wang CH, Huang CH, Chang WT, et al (2016) The effects of calcium and sodium bicarbonate on severe hyperkalaemia during cardiopulmonary resuscitation: a retrospective cohort study of adult in-hospital cardiac arrest. Resuscitation 98:105–11 [CrossRef] [PubMed] [Google Scholar]
  • Bar-Joseph G, Abramson NS, Kelsey SF, et al (2005) Improved resuscitation outcome in emergency medical systems with increased usage of sodium bicarbonate during cardiopulmonary resuscitation. Acta Anaesthesiol Scand 49:6–15 [CrossRef] [PubMed] [Google Scholar]
  • Vukmir RB, Katz L, Sodium Bicarbonate Study Group (2006) Sodium bicarbonate improves outcome in prolonged prehospital cardiac arrest. Am J Emerg Med 24:156–61 [Google Scholar]
  • Monsieurs KG, Nolan JP, Bossaert LL, et al (2015) European resuscitation council guidelines for resuscitation 2015: Section 1. Executive summary. Resuscitation 95:1–80 [CrossRef] [PubMed] [Google Scholar]
  • Joffre J, Bourcier S, Hariri G, et al (2018) Reversible microvascular hyporeactivity to acetylcholine during diabetic ketoacidosis. Crit Care Med 46:e772–e8 [CrossRef] [PubMed] [Google Scholar]
  • Duhon B, Attridge RL, Franco-Martinez AC, et al (2013) Intravenous sodium bicarbonate therapy in severely acidotic diabetic ketoacidosis. Ann Pharmacother 47:970–5 [PubMed] [Google Scholar]
  • Viallon A, Zeni F, Lafond P, et al (1999) Does bicarbonate therapy improve the management of severe diabetic ketoacidosis? Crit Care Med 27:2690–3 [CrossRef] [PubMed] [Google Scholar]
  • Temple AR (1978) Pathophysiology of aspirin overdosage toxicity, with implications for management. Pediatrics 62:873–6 [PubMed] [Google Scholar]
  • Juurlink DN, Gosselin S, Kielstein JT, et al (2015) Extracorporeal treatment for salicylate poisoning: systematic review and recommendations from the EXTRIP workgroup. Ann Emerg Med 66:165–81 [CrossRef] [PubMed] [Google Scholar]
  • Prescott LF, Balali-Mood M, Critchley JA, et al (1982) Diuresis or urinary alkalinisation for salicylate poisoning? Br Med J 285:1383–6 [CrossRef] [PubMed] [Google Scholar]
  • Legrand M, Darmon M, Joannidis M, Payen D (2013) Management of renal replacement therapy in ICU patients: an international survey. Intensive Care Med 39:101–8 [CrossRef] [PubMed] [Google Scholar]
  • Wald R, McArthur E, Adhikari NKJ, et al (2015) Changing incidence and outcomes following dialysis-requiring acute kidney injury among critically ill adults: a population-based cohort study. Am J Kidney Dis 65:870–7 [CrossRef] [PubMed] [Google Scholar]
  • Zarbock A, Kellum JA, Schmidt C, et al (2016) Effect of early vs delayed initiation of renal replacement therapy on mortality in critically ill patients with acute kidney injury: the ELAIN randomized clinical trial. JAMA 315:2190–9 [CrossRef] [PubMed] [Google Scholar]
  • Gaudry S, Hajage D, Schortgen F, et al (2016) Initiation strategies for renal-replacement therapy in the intensive care unit. N Engl J Med 375:122–33 [Google Scholar]
  • Barbar SD, Clere-Jehl R, Bourredjem A, et al (2018) Timing of renal-replacement therapy in patients with acute kidney injury and sepsis. N Engl J Med 379:1431–42 [Google Scholar]
  • Yeh HC, Ting IW, Tsai CW, et al (2017) Serum lactate level and mortality in metformin-associated lactic acidosis requiring renal replacement therapy: a systematic review of case reports and case series. BMC Nephrol 18:229 [CrossRef] [PubMed] [Google Scholar]
  • Mariano F, Pozzato M, Inguaggiato P, et al (2017) Metformin-associated lactic acidosis undergoing renal replacement therapy in intensive care units: a five-million population-based study in the North-West of Italy. Blood Purif 44:198–205 [CrossRef] [PubMed] [Google Scholar]
  • Calello DP, Liu KD, Wiegand TJ, et al (2015) Extracorporeal treatment for metformin poisoning: systematic review and recommendations from the extracorporeal treatments in poisoning workgroup. Crit Care Med 43:1716–30 [CrossRef] [PubMed] [Google Scholar]
  • Hovda KE, Hunderi OH, Tafjord AB, et al (2005) Methanol outbreak in Norway 2002–2004: epidemiology, clinical features and prognostic signs. J Intern Med 258:181–90 [Google Scholar]
  • Kute VB, Godara SM, Shah PR, et al (2012) Hemodialysis for methyl alcohol poisoning: a single-center experience. Saudi J Kidney Dis Transplant 23:37–43 [Google Scholar]
  • Liu JJ, Daya MR, Carrasquillo O, Kales SN (1998) Prognostic factors in patients with methanol poisoning. J Toxicol Clin Toxicol 36:175–81 [Google Scholar]
  • Coulter CV, Farquhar SE, McSherry CM, et al (2011) Methanol and ethylene glycol acute poisonings — predictors of mortality. Clin Toxicol 49:900–6 [CrossRef] [PubMed] [Google Scholar]
  • Brent J, McMartin K, Phillips S, et al (2001) Fomepizole for the treatment of methanol poisoning. N Engl J Med 344:424–9 [Google Scholar]
  • Mégarbane B, Borron SW, Baud FJ (2005) Current recommendations for treatment of severe toxic alcohol poisonings. Intensive Care Med 31:189–95 [CrossRef] [PubMed] [Google Scholar]
  • Roberts DM, Yates C, Megarbane B, et al (2015) Recommendations for the role of extracorporeal treatments in the management of acute methanol poisoning: a systematic review and consensus statement. Crit Care Med 43:461–72 [CrossRef] [PubMed] [Google Scholar]
  • McCabe DJ, Lu JJ (2017) The association of hemodialysis and survival in intubated salicylate-poisoned patients. Am J Emerg Med 35:899–903 [Google Scholar]
  • Dempsey JA, Smith CA (2014) Pathophysiology of human ventilatory control. Eur Respir J 44:495–512 [CrossRef] [PubMed] [Google Scholar]
  • Lumb A (2016) Nunn’s Applied Respiratory Physiology, 8th edition. Elsevier [Google Scholar]
  • Javaheri S, Corbett W, Wagner K, Adams JM (1994) Quantitative cerebrospinal fluid acid-base balance in acute respiratory alkalosis. Am J Respir Crit Care Med 150:78–82 [CrossRef] [PubMed] [Google Scholar]
  • Javaheri S, Herrera L, Kazemi H (1979) Ventilatory drive in acute metabolic acidosis. J Appl Physiol 46:913–8 [Google Scholar]
  • Fulop M (1982) Ventilatory response in patients with acute lactic acidosis. Crit Care Med 10:173–5 [CrossRef] [PubMed] [Google Scholar]
  • Curley GF, Laffey JG (2014) Acidosis in the critically ill — balancing risks and benefits to optimize outcome. Crit Care 18:129 [CrossRef] [PubMed] [Google Scholar]
  • Rhodes A, Evans LE, Alhazzani W, et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43:304-77 [CrossRef] [PubMed] [Google Scholar]
  • Stengl M, Ledvinova L, Chvojka J, et al (2013) Effects of clinically relevant acute hypercapnic and metabolic acidosis on the cardiovascular system: an experimental porcine study. Crit Care 17:R303 [CrossRef] [PubMed] [Google Scholar]
  • Rhodes A, Evans LE, Alhazzani W, et al (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock. Crit Care Med 45:486–52 [CrossRef] [PubMed] [Google Scholar]
  • Brochard L, Slutsky A, Pesenti A (2017) Mechanical ventilation to minimize progression of lung injury in acute respiratory failure. Am J Respir Crit Care Med 195:438–42 [CrossRef] [PubMed] [Google Scholar]
  • Mascheroni D, Kolobow T, Fumagalli R, et al (1988) Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study. Intensive Care Med 15:8–14 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.