Accès gratuit
Numéro
Méd. Intensive Réa.
Volume 26, Numéro 6, Novembre 2017
Néphrologie et métabolisme
Page(s) 481 - 504
Section Recommandations / Recommendations
DOI https://doi.org/10.1007/s13546-017-1310-z
Publié en ligne 9 novembre 2017
  • The Kidney Disease Improving Gloval Outcomes (KDIGO) Working Group, (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney International Suppl 2: 1–138 [CrossRef] [Google Scholar]
  • Hoste EA, Damen J, Vanholder RC, Lameire NH, Delanghe JR, Van den Hauwe K, Colardyn FA, (2005) Assessment of renal function in recently admitted critically ill patients with normal serum creatinine. Nephrol Dial Transplant 20: 747–753 [CrossRef] [PubMed] [Google Scholar]
  • Kellum JA, Lameire N, KDIGO AKI Guideline Work Group, (2013) Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care 17: 204 [CrossRef] [PubMed] [Google Scholar]
  • Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P; Acute Dialysis Quality Initiative workgroup. Acute renal failure — definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care 8: R204–212 [CrossRef] [PubMed] [Google Scholar]
  • Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A, Acute Kidney Injury N, (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11: R31 [CrossRef] [PubMed] [Google Scholar]
  • Uchino S, Bellomo R, Goldsmith D, Bates S, Ronco C, (2006) An assessment of the RIFLE criteria for acute renal failure in hospitalized patients. Crit Care Med 34: 1913–1917 [CrossRef] [PubMed] [Google Scholar]
  • Hoste EA, Clermont G, Kersten A, Venkataraman R, Angus DC, De Bacquer D, Kellum JA, (2006) RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: a cohort analysis. Crit Care 10: R73 [CrossRef] [PubMed] [Google Scholar]
  • Bagshaw SM, George C, Dinu I, Bellomo R, (2008) A multi-centre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. Nephrol Dial Transplant 23: 1203–1210 [CrossRef] [PubMed] [Google Scholar]
  • Joannidis M, Metnitz B, Bauer P, Schusterschitz N, Moreno R, Druml W, Metnitz PG, (2009) Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med 35: 1692–1702 [CrossRef] [PubMed] [Google Scholar]
  • Coca SG, Singanamala S, Parikh CR, (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81: 442–448 [CrossRef] [PubMed] [Google Scholar]
  • Akcan-Arikan A, Zappitelli M, Loftis LL, Washburn KK, Jefferson LS, Goldstein SL, (2007) Modified RIFLE criteria in critically ill children with acute kidney injury. Kidney Int 71: 1028–1035 [CrossRef] [PubMed] [Google Scholar]
  • Schwartz GJ, Brion LP, Spitzer A, (1987) The use of plasma creatinine concentration for estimating glomerular filtration rate in infants, children, and adolescents. Pediatr Clin North Am 34: 571–590 [CrossRef] [PubMed] [Google Scholar]
  • Plotz FB, Bouma AB, van Wijk JA, Kneyber MC, Bokenkamp A, (2008) Pediatric acute kidney injury in the ICU: an independent evaluation of pRIFLE criteria. Intensive Care Med 34: 1713–1717 [CrossRef] [PubMed] [Google Scholar]
  • Bonventre JV, Yang L, (2011) Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest 121: 4210–4221 [CrossRef] [PubMed] [Google Scholar]
  • Bellomo R, Kellum JA, Ronco C, (2012) Acute kidney injury. Lancet 380: 756–766 [CrossRef] [PubMed] [Google Scholar]
  • Chertow GM, Burdick E, Honour M, Bonventre JV, Bates DW (2005) Acute kidney injury, mortality, length of stay, and costs in hospitalized patients. J Am Soc Nephrol 16: 3365–3370 [CrossRef] [PubMed] [Google Scholar]
  • Wald R, Quinn RR, Luo J, Li P, Scales DC, Mamdani MM, Ray JG; University of Toronto Acute Kidney Injury Research G, (2009) Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 302: 1179–1185 [CrossRef] [PubMed] [Google Scholar]
  • Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Ronco C; Beginning, Ending Supportive Therapy for the Kidney (2005) Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA 294: 813–818 [CrossRef] [PubMed] [Google Scholar]
  • Waikar SS, Liu KD, Chertow GM, (2008) Diagnosis, epidemiology and outcomes of acute kidney injury. Clin J Am Soc Nephrol 3: 844–861 [CrossRef] [PubMed] [Google Scholar]
  • Nisula S, Kaukonen KM, Vaara ST, Korhonen AM, Poukkanen M, Karlsson S, Haapio M, Inkinen O, Parviainen I, Suojaranta-Ylinen R, Laurila JJ, Tenhunen J, Reinikainen M, Ala-Kokko T, Ruokonen E, Kuitunen A, Pettila V, Group FS, (2013) Incidence, risk factors and 90-day mortality of patients with acute kidney injury in Finnish intensive care units: the FINNAKI study. Intensive Care Med 39: 420–428. [CrossRef] [PubMed] [Google Scholar]
  • Vaara ST, Pettila V, Reinikainen M, Kaukonen KM, patients with acute kidney injury in Finnish intensive care units: the FINNAKI study (2012) Population-based incidence, mortality and quality of life in critically ill patients treated with renal replacement therapy: a nationwide retrospective cohort study in Finnish intensive care units. Crit Care 16: R13 [CrossRef] [PubMed] [Google Scholar]
  • Endre ZH, Pickering JW, Walker RJ, (2011) Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am J Physiol Renal Physiol 301: F697–707 [CrossRef] [PubMed] [Google Scholar]
  • Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, Chawla LS, Cruz D, Ince C, Okusa MD, Workgroup A, (2014) Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th Acute Dialysis Quality Initiative consensus conference. Kidney Int 85: 513–521 [CrossRef] [PubMed] [Google Scholar]
  • Bihorac A, Kellum JA, (2015) Acute kidney injury in 2014: a step towards understanding mechanisms of renal repair. Nat Rev Nephrol 11: 74–75 [CrossRef] [PubMed] [Google Scholar]
  • Cruz DN, Mehta RL, (2014) Acute kidney injury in 2013: breaking barriers for biomarkers in AKI-progress at last. Nat Rev Nephrol 10: 74–76 [CrossRef] [PubMed] [Google Scholar]
  • Parikh CR, Devarajan P, (2008) New biomarkers of acute kidney injury. Crit Care Med 36: S159–165 [CrossRef] [PubMed] [Google Scholar]
  • Zhang Z, Lu B, Sheng X, Jin N, (2011) Cystatin C in prediction of acute kidney injury: a systemic review and meta-analysis. Am J Kidney Dis 58: 356–365 [CrossRef] [PubMed] [Google Scholar]
  • Liu Y, Guo W, Zhang J, Xu C, Yu S, Mao Z, Wu J, Ye C, Mei C, Dai B, (2013) Urinary interleukin 18 for detection of acute kidney injury: a meta-analysis. Am J Kidney Dis 62: 1058–1067 [CrossRef] [PubMed] [Google Scholar]
  • Shao X, Tian L, Xu W, Zhang Z, Wang C, Qi C, Ni Z, Mou S, (2014) Diagnostic value of urinary kidney injury molecule 1 for acute kidney injury: a meta-analysis. PLoS One 9: e84131 [CrossRef] [PubMed] [Google Scholar]
  • Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A; Group NM-aI, (2009) Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis 54: 1012–1024 [CrossRef] [PubMed] [Google Scholar]
  • Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, Goldstein SL, Makris K, Ronco C, Martensson J, Martling CR, Venge P, Siew E, Ware LB, Ikizler TA, Mertens PR, (2011) The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol 57: 1752–1761 [CrossRef] [PubMed] [Google Scholar]
  • Kashani K, Al-KhafajiA Ardiles T, ArtigasA Bagshaw SM, Bell M, Bihorac A, Birkhahn R, Cely CM, Chawla LS, Davison DL, Feldkamp T, Forni LG, Gong MN, Gunnerson KJ, Haase M, Hackett J, Honore PM, Hoste EA, Joannes-Boyau O, Joannidis M, Kim P, Koyner JL, Laskowitz DT, Lissauer ME, Marx G, McCullough PA, Mullaney S, Ostermann M, Rimmele T, Shapiro NI, ShawAD Shi J, Sprague AM, Vincent JL, Vinsonneau C, Wagner L, Walker MG, Wilkerson RG, Zacharowski K, Kellum JA, (2013) Discovery and validation of cell cycle arrest biomarkers in human acute kidney injury. Crit Care 17: R25 [CrossRef] [PubMed] [Google Scholar]
  • Bihorac A, Chawla LS, Shaw AD, Al-Khafaji A, Davison DL, Demuth GE, Fitzgerald R, Gong MN, Graham DD, Gunnerson K, Heung M, Jortani S, Kleerup E, Koyner JL, Krell K, Letourneau J, Lissauer M, Miner J, Nguyen HB, Ortega LM, Self WH, Sellman R, Shi J, Straseski J, Szalados JE, Wilber ST, Walker MG, Wilson J, Wunderink R, Zimmerman J, Kellum JA, (2014) Validation of cell-cycle arrest biomarkers for acute kidney injury using clinical adjudication. Am J Respir Crit Care Med 189: 932–939 [CrossRef] [PubMed] [Google Scholar]
  • McIlroy DR, Wagener G, Lee HT, (2010) Biomarkers of acute kidney injury: an evolving domain. Anesthesiology 112: 998–1004 [CrossRef] [PubMed] [Google Scholar]
  • Goldstein SL, (2012) Acute kidney injury in children and its potential consequences in adulthood. Blood Purif 33: 131–137 [CrossRef] [PubMed] [Google Scholar]
  • Schiffl H, Lang SM, (2013) Urinary biomarkers and acute kidney injury in children: the long road to clinical application. Pediatr Nephrol 28: 837–842 [CrossRef] [PubMed] [Google Scholar]
  • Ataei N, Bazargani B, Ameli S, Madani A, Javadilarijani F, Moghtaderi M, Abbasi A, Shams S, Ataei F, (2014) Early detection of acute kidney injury by serum cystatin C in critically ill children. Pediatr Nephrol 29: 133–138 [CrossRef] [PubMed] [Google Scholar]
  • Schnell D, Darmon M, (2012) Renal Doppler to assess renal perfusion in the critically ill: a reappraisal. Intensive Care Med 38, 1751–1760 [CrossRef] [PubMed] [Google Scholar]
  • Duranteau J, Deruddre S, Vigue B, Chemla D, (2008) Doppler monitoring of renal hemodynamics: why the best is yet to come. Intensive Care Med 34: 1360–1361. [CrossRef] [PubMed] [Google Scholar]
  • Wan L, Yang N, Hiew CY, Schelleman A, Johnson L, May C, Bellomo R, (2008) An assessment of the accuracy of renal blood flow estimation by Doppler ultrasound. Intensive Care Med 34, 1503–1510 [CrossRef] [PubMed] [Google Scholar]
  • Lauschke A, Teichgraber UK, Frei U, Eckardt KU, (2006) “Low-dose” dopamine worsens renal perfusion in patients with acute renal failure. Kidney Int 69: 1669–1674 [CrossRef] [PubMed] [Google Scholar]
  • Deruddre S, Cheisson G, Mazoit JX, Vicaut E, Benhamou D, Duranteau J, (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med 33: 1557–1562 [CrossRef] [PubMed] [Google Scholar]
  • Schnell D, Camous L, Guyomarc’h S, Duranteau J, Canet E, Gery P, Dumenil AS, Zeni F, Azoulay E, Darmon M, (2013) Renal perfusion assessment by renal Doppler during fluid challenge in sepsis. Crit Care Med 41: 1214–1220 [CrossRef] [PubMed] [Google Scholar]
  • Lerolle N, Guerot E, Faisy C, Bornstain C, Diehl JL, Fagon JY, (2006) Renal failure in septic shock: predictive value of Doppler-based renal arterial resistive index. Intensive Care Med 32: 1553–1559 [CrossRef] [PubMed] [Google Scholar]
  • Platt JF, Rubin JM, Ellis JH, (1991) Acute renal failure: possible role of duplex Doppler US in distinction between acute prerenal failure and acute tubular necrosis. Radiology 179: 419–423. [CrossRef] [PubMed] [Google Scholar]
  • Izumi M, Sugiura T, Nakamura H, Nagatoya K, Imai E, Hori M, (2000) Differential diagnosis of prerenal azotemia from acute tubular necrosis and prediction of recovery by Doppler ultrasound. Am J Kidney Dis 35: 713–719 [CrossRef] [PubMed] [Google Scholar]
  • Stevens PE, Gwyther SJ, Hanson ME, Boultbee JE, Kox WJ, Phillips ME, (1990)Noninvasive monitoring of renal blood flow characteristics during acute renal failure in man. Intensive Care Med 16: 153–158 [CrossRef] [PubMed] [Google Scholar]
  • Schnell D, Deruddre S, Harrois A, Pottecher J, Cosson C, Adoui N, Benhamou D, Vicaut E, Azoulay E, Duranteau J, (2012) Renal resistive index better predicts the occurrence of acute kidney injury than cystatin C. Shock 38: 592–597 [CrossRef] [PubMed] [Google Scholar]
  • Darmon M, Schortgen F, Vargas F, Liazydi A, Schlemmer B, Brun-Buisson C, Brochard L, (2011) Diagnostic accuracy of Doppler renal resistive index for reversibility of acute kidney injury in critically ill patients. Intensive Care Med 37: 68–76 [CrossRef] [PubMed] [Google Scholar]
  • Schnell D, Reynaud M, Venot M, Le Maho AL, Dinic M, Baulieu M, Ducos G, Terreaux J, Zeni F, Azoulay E, Meziani F, Duranteau J, Darmon M, (2014) Resistive Index or color-Doppler semi-quantitative evaluation of renal perfusion by inexperienced physicians: results of a pilot study. Minerva Anestesiol 80: 1273–1281 [PubMed] [Google Scholar]
  • Bossard G, Bourgoin P, Corbeau JJ, Huntzinger J, Beydon L, (2011) Early detection of postoperative acute kidney injury by Doppler renal resistive index in cardiac surgery with cardiopulmonary bypass. Br J Anaesth 107: 891–898 [CrossRef] [PubMed] [Google Scholar]
  • Dewitte A, Coquin J, Meyssignac B, Joannes-Boyau O, Fleureau C, Roze H, Ripoche J, Janvier G, Combe C, Ouattara A, (2012) Doppler resistive index to reflect regulation of renal vascular tone during sepsis and acute kidney injury. Crit Care 16: R165 [CrossRef] [PubMed] [Google Scholar]
  • Lerolle N, (2012) Please don’t call me RI anymore; I may not be the one you think I am!. Crit Care 16: 174 [CrossRef] [PubMed] [Google Scholar]
  • Bude RO, Rubin JM, (1999) Relationship between the resistive index and vascular compliance and resistance. Radiology 211: 411–417 [CrossRef] [PubMed] [Google Scholar]
  • Murphy ME, Tublin ME, (2000) Understanding the Doppler RI: impact of renal arterial distensibility on the RI in a hydronephrotic ex vivo rabbit kidney model. J Ultrasound Med 19: 303–314 [CrossRef] [PubMed] [Google Scholar]
  • Tublin ME, Tessler FN, Murphy ME,(1999) Correlation between renal vascular resistance, pulse pressure, and the resistive index in isolated perfused rabbit kidneys. Radiology 213: 258–264 [CrossRef] [PubMed] [Google Scholar]
  • Naesens M, Heylen L, Lerut E, Claes K, De Wever L, Claus F, Oyen R, Kuypers D, Evenepoel P, Bammens B, Sprangers B, Meijers B, Pirenne J, Monbaliu D, de Jonge H, Metalidis C, De Vusser K, Vanrenterghem Y, (2013) Intrarenal resistive index after renal transplantation. N Engl J Med 369: 1797–1806 [CrossRef] [PubMed] [Google Scholar]
  • Huen SC, Parikh CR, (2012) Predicting acute kidney injury after cardiac surgery: a systematic review. Ann Thorac Surg 93: 337–347 [CrossRef] [Google Scholar]
  • Kheterpal S, Tremper KK, Heung M, Rosenberg AL, Englesbe M, Shanks AM, Campbell DA Jr, (2009) Development and validation of an acute kidney injury risk index for patients undergoing general surgery: results from a national data set. Anesthesiology 110: 505–515 [CrossRef] [PubMed] [Google Scholar]
  • Pannu N, Nadim MK, (2008) An overview of drug-induced acute kidney injury. Crit Care Med 36: S216–223 [CrossRef] [PubMed] [Google Scholar]
  • Bentley ML, Corwin HL, Dasta J, (2010) Drug-induced acute kidney injury in the critically ill adult: recognition and prevention strategies. Crit Care Med 38: S169–174 [CrossRef] [PubMed] [Google Scholar]
  • Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD, Preiser JC, Outin H, Troche G, Charpentier C, Trouillet JL, Kimmoun A, Forceville X, Darmon M, Lesur O, Reignier J, Abroug F, Berger P, Clec’h C, Cousson J, Thibault L, Chevret S; CRISTAL Investigators, (2013) Effects of fluid resuscitation with colloids versus crystalloids on mortality in critically ill patients presenting with hypovolemic shock: the CRISTAL randomized trial. JAMA 310: 1809–1817 [CrossRef] [PubMed] [Google Scholar]
  • Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, McGuinness S, Rajbhandari D, Taylor CB, (2012) Webb SA; CHEST Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group. N Engl J Med 367: 1901–1911 [CrossRef] [PubMed] [Google Scholar]
  • Haase N, Perner A, Hennings LI, Siegemund M, Lauridsen B, Wetterslev M, Wetterslev J, (2013) Hydroxyethyl starch 130/0.38-0.45 versus crystalloid or albumin in patients with sepsis: systematic review with meta-analysis and trial sequential analysis. BMJ 346: f839 [CrossRef] [PubMed] [Google Scholar]
  • Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, Madsen KR, Moller MH, Elkjaer JM, Poulsen LM, Bendtsen A, Winding R, Steensen M, Berezowicz P, Soe-Jensen P, Bestle M, Strand K, Wiis J, White JO, Thornberg KJ, Quist L, Nielsen J, Andersen LH, Holst LB, Thormar K, Kjaeldgaard AL, Fabritius ML, Mondrup F, Pott FC, Moller TP, Winkel P, Wetterslev J; 6S Trial Group; Scandinavian Critical Care Trials Group, (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med 367: 124–134 [CrossRef] [PubMed] [Google Scholar]
  • Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, Fergusson DA, (2013) Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation: a systematic review and meta-analysis. JAMA 309: 678–688 [CrossRef] [PubMed] [Google Scholar]
  • Guidet B, Martinet O, Boulain T, Philippart F, Poussel JF, Maizel J, Forceville X, Feissel M, Hasselmann M, Heininger A, Van Aken H, (2012) Assessment of hemodynamic efficacy and safety of 6% hydroxyethylstarch 130/0.4 versus 0.9% NaCl fluid replacement in patients with severe sepsis: the CRYSTMAS study. Crit Care 16: R94 [CrossRef] [PubMed] [Google Scholar]
  • Patel A, Waheed U, Brett SJ, (2013) Randomised trials of 6% tetrastarch (hydroxyethyl starch 130/0.4 or 0.42) for severe sepsis reporting mortality: systematic review and meta-analysis. Intensive Care Med 39: 811–822 [CrossRef] [PubMed] [Google Scholar]
  • Hartog CS, Reinhart K, (2012) CRYSTMAS study adds to concerns about renal safety and increased mortality in sepsis patients. Crit Care 16: 454; author reply 454 [CrossRef] [PubMed] [Google Scholar]
  • Brunkhorst FM, Engel C, Bloos F, Meier-Hellmann A, Ragaller M, Weiler N, Moerer O, Gruendling M, Oppert M, Grond S, Olthoff D, Jaschinski U, John S, Rossaint R, Welte T, Schaefer M, Kern P, Kuhnt E, Kiehntopf M, Hartog C, Natanson C, Loeffler M, Reinhart K; German Competence Network S, (2008) Intensive insulin therapy and pentastarch resuscitation in severe sepsis. N Engl J Med 358: 125–139 [CrossRef] [PubMed] [Google Scholar]
  • Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, Brochard L, (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357: 911–916 [CrossRef] [PubMed] [Google Scholar]
  • Perel P, Roberts I, Ker K, (2013) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev: CD000567 [Google Scholar]
  • Mutter TC, Ruth CA, Dart AB, (2013) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev: CD007594 [Google Scholar]
  • Martin C, Jacob M, Vicaut E, Guidet B, Van Aken H, Kurz A, (2013) Effect of waxy maize-derived hydroxyethyl starch 130/0.4 on renal function in surgical patients. Anesthesiology 118: 387–394 [CrossRef] [PubMed] [Google Scholar]
  • The European Medicines Agency’s Pharmacovigilance Risk Assessment Committee, (2015) Hydroxyethyl-starch solutions (HES) should no longer be used in patients with sepsis or burn injuries or in critically ill patients. http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2013/10/news_detail_001917. (Accessed: January 27th, 2016) [Google Scholar]
  • Kurtz TW, Morris RC Jr, (1983) Dietary chloride as a determinant of “sodium-dependent” hypertension. Science 222: 1139–1141 [CrossRef] [PubMed] [Google Scholar]
  • Wilcox CS, (1983) Regulation of renal blood flow by plasma chloride. J Clin Invest 71: 726–735 [CrossRef] [PubMed] [Google Scholar]
  • Hansen PB, Jensen BL, Skott O, (1998) Chloride regulates afferent arteriolar contraction in response to depolarization. Hypertension 32: 1066–1070 [CrossRef] [PubMed] [Google Scholar]
  • Chowdhury AH, Cox EF, Francis ST, Lobo DN, (2012) A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and plasma-lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 256: 18–24 [CrossRef] [PubMed] [Google Scholar]
  • Lobo DN, Awad S, (2014) Should chloride-rich crystalloids remain the mainstay of fluid resuscitation to prevent “pre-renal” acute kidney injury?: con. Kidney Int 86: 1096–1105 [CrossRef] [PubMed] [Google Scholar]
  • Yunos NM, Kim IB, Bellomo R, Bailey M, Ho L, Story D, Gutteridge GA, Hart GK, (2011) The biochemical effects of restricting chloride-rich fluids in intensive care. Crit Care Med 39: 2419–2424 [CrossRef] [PubMed] [Google Scholar]
  • Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, Kellum JA, (2012) Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte.Ann Surg 255: 821–829 [CrossRef] [PubMed] [Google Scholar]
  • Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M, (2012) Association between a chloride-liberal versus chloriderestrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308: 1566–1572 [CrossRef] [PubMed] [Google Scholar]
  • McCluskey SA, Karkouti K, Wijeysundera D, Minkovich L, Tait G, Beattie WS, (2013) Hyperchloremia after noncardiac surgery is independently associated with increased morbidity and mortality: a propensity-matched cohort study. Anesth Analg 117: 412–421 [CrossRef] [PubMed] [Google Scholar]
  • Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, Setoguchi S, Beadles C, Lindenauer PK, (2014) Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis. Crit Care Med 42: 1585–1591 [CrossRef] [PubMed] [Google Scholar]
  • Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD, (2015) Meta-analysis of highversus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg 102: 24–36 [CrossRef] [PubMed] [Google Scholar]
  • Raghunathan K, Murray PT, Beattie WS, Lobo DN, Myburgh J, Sladen R, Kellum JA, Mythen MG, Shaw AD; Group AXI, (2014) Choice of fluid in acute illness: what should be given? An international consensus. Br J Anaesth 113: 772–783 [CrossRef] [PubMed] [Google Scholar]
  • Antonelli M, Levy M, Andrews PJ, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A, (2007) Hemodynamic monitoring in shock and implications for management.. International Consensus Conference, Paris, France, 27–28 April 2006. Intensive Care Med 33: 575–590 [CrossRef] [PubMed] [Google Scholar]
  • Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb S, Beale RJ, Vincent JL, Moreno R; Surviving Sepsis Campaign Guidelines Committee including The Pediatric S, (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39: 165–228. [CrossRef] [PubMed] [Google Scholar]
  • Varpula M, Tallgren M, Saukkonen K, Voipio-Pulkki LM, Pettila V, (2005) Hemodynamic variables related to outcome in septic shock. Intensive Care Med 31: 1066–1071 [CrossRef] [PubMed] [Google Scholar]
  • Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group, (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–1377 [CrossRef] [PubMed] [Google Scholar]
  • Poukkanen M, Wilkman E, Vaara ST, Pettila V, Kaukonen KM, Korhonen AM, Uusaro A, Hovilehto S, Inkinen O, Laru-Sompa R, Hautamaki R, Kuitunen A, Karlsson S; FINNAKI Study Group, (2013) Hemodynamic variables and progression of acute kidney injury in critically ill patients with severe sepsis: data from the prospective observational FINNAKI study. Crit Care 17: R295. [CrossRef] [PubMed] [Google Scholar]
  • Asfar P, Meziani F, Hamel JF, Grelon F, Megarbane B, Anguel N, Mira JP, Dequin PF, Gergaud S, Weiss N, Legay F, Le Tulzo Y, Conrad M, Robert R, Gonzalez F, Guitton C, Tamion F, Tonnelier JM, Guezennec P, Van Der Linden T, Vieillard-Baron A, Mariotte E, Pradel G, Lesieur O, Ricard JD, Herve F, du Cheyron D, Guerin C, Mercat A, Teboul JL, Radermacher P; SEPSISPAM Investigators, (2014) High versus low blood-pressure target in patients with septic shock. N Engl J Med 370: 1583–1593 [CrossRef] [PubMed] [Google Scholar]
  • Bourgoin A, Leone M, Delmas A, Garnier F, Albanese J, Martin C, (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33: 780–786 [CrossRef] [PubMed] [Google Scholar]
  • LeDoux D, Astiz ME, Carpati CM, Rackow EC, (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28: 2729–2732 [CrossRef] [PubMed] [Google Scholar]
  • Dunser MW, Takala J, Ulmer H, Mayr VD, Luckner G, Jochberger S, Daudel F, Lepper P, Hasibeder WR, Jakob SM, (2009) Arterial blood pressure during early sepsis and outcome. Intensive Care Med 35: 1225–1233 [CrossRef] [PubMed] [Google Scholar]
  • Benchekroune S, Karpati PC, Berton C, Nathan C, Mateo J, Chaara M, Riche F, Laisne MJ, Payen D, Mebazaa A, (2008) Diastolic arterial blood pressure: a reliable early predictor of survival in human septic shock. J Trauma 64: 1188–1195 [CrossRef] [PubMed] [Google Scholar]
  • Legrand M, Dupuis C, Simon C, Gayat E, Mateo J, Lukaszewicz AC, Payen D, (2013) Association between systemic hemodynamics and septic acute kidney injury in critically ill patients: a retrospective observational study. Crit Care 17: R278 [CrossRef] [PubMed] [Google Scholar]
  • Walsh M, Devereaux PJ, Garg AX, Kurz A, Turan A, Rodseth RN, Cywinski J, Thabane L, Sessler DI, (2013) Relationship between intraoperative mean arterial pressure and clinical outcomes after noncardiac surgery: toward an empirical definition of hypotension. Anesthesiology 119: 507–515 [CrossRef] [PubMed] [Google Scholar]
  • Haase M, Bellomo R, Story D, Letis A, Klemz K, Matalanis G, Seevanayagam S, Dragun D, Seeliger E, Mertens PR, HaaseFielitz A, (2012) Effect of mean arterial pressure, haemoglobin and blood transfusion during cardiopulmonary bypass on post-operative acute kidney injury. Nephrol Dial Transplant 27: 153–160 [CrossRef] [PubMed] [Google Scholar]
  • Kanji HD, Schulze CJ, Hervas-Malo M, Wang P, Ross DB, Zibdawi M, Bagshaw SM, (2010) Difference between pre-operative and cardiopulmonary bypass mean arterial pressure is independently associated with early cardiac surgery-associated acute kidney injury. J Cardiothorac Surg 5: 71 [CrossRef] [PubMed] [Google Scholar]
  • Brienza N, Giglio MT, Marucci M, Fiore T, (2009) Does perioperative hemodynamic optimization protect renal function in surgical patients? A meta-analytic study. Crit Care Med 37: 2079–2090 [CrossRef] [PubMed] [Google Scholar]
  • Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K; Optimisation Systematic Review Steering Group, (2013) Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane systematic review. Br J Anaesth 111: 535–548 [CrossRef] [PubMed] [Google Scholar]
  • Bouchard J, Soroko SB, Chertow GM, Himmelfarb J, Ikizler TA, Paganini EP, Mehta RL; Program to Improve Care in Acute Renal Disease Study Group, (2009) Fluid accumulation, survival and recovery of kidney function in critically ill patients with acute kidney injury. Kidney Int 76: 422–427 [CrossRef] [PubMed] [Google Scholar]
  • Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL; Sepsis Occurrence in Acutely Ill Patients I, (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12: R74 [CrossRef] [PubMed] [Google Scholar]
  • Teixeira C, Garzotto F, Piccinni P, Brienza N, Iannuzzi M, Gramaticopolo S, Forfori F, Pelaia P, Rocco M, Ronco C, Anello CB, Bove T, Carlini M, Michetti V, Cruz DN; NEFROlogia e Cura INTensiva (NEFROINT) investigators, (2013) Fluid balance and urine volume are independent predictors of mortality in acute kidney injury. Crit Care 17: R14 [CrossRef] [PubMed] [Google Scholar]
  • Grams ME, Estrella MM, Coresh J, Brower RG, Liu KD, National Heart L; Blood Institute Acute Respiratory Distress Syndrome N, (2011) Fluid balance, diuretic use, and mortality in acute kidney injury. Clin J Am Soc Nephrol 6: 966–973 [CrossRef] [PubMed] [Google Scholar]
  • RENAL Replacement Therapy Study Investigators, Bellomo R, Cass A, Cole L, Finfer S, Gallagher M, Lee J, Lo S, McArthur C, McGuiness S, Norton R, Myburgh J, Scheinkestel C, Su S, (2012) An observational study fluid balance and patient outcomes in the randomized evaluation of normal versus augmented level of replacement therapy trial. Crit Care Med 40: 1753–1760 [CrossRef] [PubMed] [Google Scholar]
  • Boland MR, Noorani A, Varty K, Coffey JC, Agha R, Walsh SR, (2013) Perioperative fluid restriction in major abdominal surgery: systematic review and meta-analysis of randomized, clinical trials. World J Surg 37: 1193–1202 [CrossRef] [PubMed] [Google Scholar]
  • Varadhan KK, Lobo DN, (2010) A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc 69: 488–498 [CrossRef] [PubMed] [Google Scholar]
  • Desjars P, Pinaud M, Bugnon D, Tasseau F, (1989) Norepinephrine therapy has no deleterious renal effects in human septic shock. Crit Care Med 17: 426–429 [CrossRef] [PubMed] [Google Scholar]
  • Desjars P, Pinaud M, Potel G, Tasseau F, Touze MD, (1987) A reappraisal of norepinephrine therapy in human septic shock. Crit Care Med 15: 134–137 [CrossRef] [PubMed] [Google Scholar]
  • Fukuoka T, Nishimura M, Imanaka H, Taenaka N, Yoshiya I, Takezawa J, (1989) Effects of norepinephrine on renal function in septic patients with normal and elevated serum lactate levels. Crit Care Med 17: 1104–1107 [CrossRef] [PubMed] [Google Scholar]
  • Martin C, Viviand X, Leone M, Thirion X, (2000) Effect of norepinephrine on the outcome of septic shock. Crit Care Med 28: 2758–2765 [CrossRef] [PubMed] [Google Scholar]
  • Redl-Wenzl EM, Armbruster C, Edelmann G, Fischl E, Kolacny M, Wechsler-Fordos A, Sporn P, (1990) Noradrenaline in the “high output-low resistance” state of patients with abdominal sepsis. Anaesthesist 39: 525–529 [PubMed] [Google Scholar]
  • Albanese J, Leone M, Garnier F, Bourgoin A, Antonini F, Martin C, (2004) Renal effects of norepinephrine in septic and nonseptic patients. Chest 126: 534–539 [CrossRef] [PubMed] [Google Scholar]
  • Martin C, Papazian L, Perrin G, Saux P, Gouin F, (1993) Norepinephrine or dopamine for the treatment of hyperdynamic septic shock? Chest 103: 1826–1831 [CrossRef] [PubMed] [Google Scholar]
  • Leone M, Albanese J, Delmas A, Chaabane W, Garnier F, Martin C, (2004) Terlipressin in catecholamine-resistant septic shock patients. Shock 22: 314–319 [CrossRef] [PubMed] [Google Scholar]
  • Albanese J, Leone M, Delmas A, Martin C, (2005) Terlipressin or norepinephrine in hyperdynamic septic shock: a prospective, randomized study. Crit Care Med 33: 1897–1902. [CrossRef] [PubMed] [Google Scholar]
  • Rihal CS, Textor SC, Grill DE, Berger PB, Ting HH, Best PJ, Singh M, Bell MR, Barsness GW, Mathew V, Garratt KN, Holmes DR Jr, (2002) Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation 105: 2259–2264 [CrossRef] [PubMed] [Google Scholar]
  • Rudnick MR, Goldfarb S, Tumlin J, (2008) Contrast-induced nephropathy: is the picture any clearer? Clin J Am Soc Nephrol 3: 261–262 [CrossRef] [PubMed] [Google Scholar]
  • Hoste EA, Doom S, De Waele J, Delrue LJ, Defreyne L, Benoit DD, Decruyenaere J, (2011) Epidemiology of contrast-associated acute kidney injury in ICU patients: a retrospective cohort analysis. Intensive Care Med 37: 1921–1931 [CrossRef] [PubMed] [Google Scholar]
  • Chousterman BG, Bouadma L, Moutereau S, Loric S, AlvarezGonzalezA Mekontso-DessapA, Laissy JP, RahmouniA Katsahian S, Brochard L, Schortgen F, (2013) Prevention of contrast-induced nephropathy by N-acetylcysteine in critically ill patients: different definitions, different results. J Crit Care 28: 701–709 [CrossRef] [PubMed] [Google Scholar]
  • Valette X, Savary B, Nowoczyn M, Daubin C, Pottier V, Terzi N, Seguin A, Fradin S, Charbonneau P, Hanouz JL, du Cheyron D, (2013) Accuracy of plasma neutrophil gelatinase-associated lipocalin in the early diagnosis of contrast-induced acute kidney injury in critical illness. Intensive Care Med 39: 857–865. [CrossRef] [PubMed] [Google Scholar]
  • Clec’h C, Razafimandimby D, Laouisset M, Chemouni F, Cohen Y, (2013) Incidence and outcome of contrast-associated acute kidney injury in a mixed medical-surgical ICU population: a retrospective study. BMC Nephrol 14: 31 [CrossRef] [PubMed] [Google Scholar]
  • Brar SS, Hiremath S, Dangas G, Mehran R, Brar SK, Leon MB, (2009) Sodium bicarbonate for the prevention of contrast induced-acute kidney injury: a systematic review and metaanalysis. Clin J Am Soc Nephrol 4: 1584–1592 [CrossRef] [PubMed] [Google Scholar]
  • Zoungas S, Ninomiya T, Huxley R, Cass A, Jardine M, Gallagher M, Patel A, Vasheghani-Farahani A, Sadigh G, Perkovic V, (2009) Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med 151: 631–638 [CrossRef] [PubMed] [Google Scholar]
  • Brown JR, Block CA, Malenka DJ, O’Connor GT, Schoolwerth AC, Thompson CA, (2009) Sodium bicarbonate plus N-acetylcysteine prophylaxis: a meta-analysis. JACC Cardiovasc Interv 2: 1116–1124 [CrossRef] [PubMed] [Google Scholar]
  • Sun Z, Fu Q, Cao L, Jin W, Cheng L, Li Z, (2013) Intravenous N-acetylcysteine for prevention of contrast-induced nephropathy: a meta-analysis of randomized, controlled trials. PLoS One 8: e55124 [CrossRef] [PubMed] [Google Scholar]
  • Jang JS, Jin HY, Seo JS, Yang TH, Kim DK, Kim TH, Urm SH, Kim DS, Kim DK, Seol SH, Kim DI, Cho KI, Kim BH, Park YH, Je HG, Ahn JM, Kim WJ, Lee JY, Lee SW, (2012) Sodium bicarbonate therapy for the prevention of contrast-induced acute kidney injury — a systematic review and meta-analysis. Circ J 76: 2255–2265 [CrossRef] [PubMed] [Google Scholar]
  • Solomon R, Werner C, Mann D, D’Elia J, Silva P, (1994) Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med 331: 1416–1420 [CrossRef] [PubMed] [Google Scholar]
  • Vaitkus PT, Brar C, (2007) N-acetylcysteine in the prevention of contrast-induced nephropathy: publication bias perpetuated by meta-analyses. Am Heart J 153: 275–280 [CrossRef] [PubMed] [Google Scholar]
  • Hoste EA, De Waele JJ, Gevaert SA, Uchino S, Kellum JA, (2010) Sodium bicarbonate for prevention of contrast-induced acute kidney injury: a systematic review and meta-analysis. Nephrol Dial Transplant 25: 747–758 [CrossRef] [PubMed] [Google Scholar]
  • Klima T, Christ A, Marana I, Kalbermatter S, Uthoff H, Burri E, Hartwiger S, Schindler C, Breidthardt T, Marenzi G, Mueller C, (2012) Sodium chloride versus sodium bicarbonate for the prevention of contrast medium-induced nephropathy: a randomized controlled trial. Eur Heart J 33: 2071–2079 [CrossRef] [PubMed] [Google Scholar]
  • Kooiman J, Sijpkens YW, de Vries JP, Brulez HF, Hamming JF, van der Molen AJ, Aarts NJ, Cannegieter SC, Putter H, Swarts R, van den Hout WB, Rabelink TJ, Huisman MV, (2014) A randomized comparison of 1-h sodium bicarbonate hydration versus standard peri-procedural saline hydration in patients with chronic kidney disease undergoing intravenous contrast-enhanced computerized tomography. Nephrol Dial Transplant 29: 1029–1036 [CrossRef] [PubMed] [Google Scholar]
  • Pattharanitima P, Tasanarong A, (2014) Pharmacological strategies to prevent contrast-induced acute kidney injury. Biomed Res Int 2014: 236930. [CrossRef] [Google Scholar]
  • Kelly AM, Dwamena B, Cronin P, Bernstein SJ, Carlos RC, (2008) Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med 148: 284–294 [CrossRef] [PubMed] [Google Scholar]
  • McCullough PA, (2008) Radiocontrast-induced acute kidney injury. Nephron Physiol 109: 61–72 [CrossRef] [Google Scholar]
  • Kellum JA, Leblanc M, Venkataraman R, (2008) Acute renal failure. BMJ Clin Evid pii: 2001. [Google Scholar]
  • Rybak MJ, Abate BJ, Kang SL, Ruffing MJ, Lerner SA, Drusano GL, (1999) Prospective evaluation of the effect of an aminoglycoside dosing regimen on rates of observed nephrotoxicity and ototoxicity. Antimicrob Agents Chemother 43: 1549–1555 [PubMed] [Google Scholar]
  • Bailey TC, Little JR, Littenberg B, Reichley RM, Dunagan WC, (1997) A meta-analysis of extended-interval dosing versus multiple daily dosing of aminoglycosides. Clin Infect Dis 24: 786–795 [CrossRef] [PubMed] [Google Scholar]
  • Hatala R, Dinh T, Cook DJ, (1996) Once-daily aminoglycoside dosing in immunocompetent adults: a meta-analysis. Ann Intern Med 124: 717–725 [CrossRef] [PubMed] [Google Scholar]
  • Wargo KA, Edwards JD, (2014) Aminoglycoside-induced nephrotoxicity.. J Pharm Pract 27: 573–577 [CrossRef] [Google Scholar]
  • Picard W, Bazin F, Clouzeau B, Bui HN, Soulat M, Guilhon E, Vargas F, Hilbert G, Bouchet S, Gruson D, Moore N, Boyer A, (2014) Propensity-based study of aminoglycoside nephrotoxicity in patients with severe sepsis or septic shock. Antimicrob Agents Chemother 58: 7468–7474 [CrossRef] [PubMed] [Google Scholar]
  • Boyer A, Gruson D, Bouchet S, Clouzeau B, Hoang-Nam B, Vargas F, Gilles H, Molimard M, Rogues AM, Moore N, (2013) Aminoglycosides in septic shock: an overview, with specific consideration given to their nephrotoxic risk. Drug Saf 36: 217–230 [CrossRef] [PubMed] [Google Scholar]
  • Croes S, Koop AH, van Gils SA, Neef C, (2012) Efficacy, nephrotoxicity and ototoxicity of aminoglycosides, mathematically modelled for modelling-supported therapeutic drug monitoring. Eur J Pharm Sci 45: 90–100. [CrossRef] [PubMed] [Google Scholar]
  • Pagkalis S, Mantadakis E, Mavros MN, Ammari C, Falagas ME, (2011) Pharmacological considerations for the proper clinical use of aminoglycosides. Drugs 71: 2277–2294 [CrossRef] [PubMed] [Google Scholar]
  • Oliveira JF, Silva CA, Barbieri CD, Oliveira GM, Zanetta DM, Burdmann EA, (2009) Prevalence and risk factors for aminoglycoside nephrotoxicity in intensive care units. Antimicrob Agents Chemother 53: 2887–2891 [CrossRef] [PubMed] [Google Scholar]
  • Selby NM, Shaw S, Woodier N, Fluck RJ, Kolhe NV, (2009) Gentamicin-associated acute kidney injury. QJM 102: 873–880 [CrossRef] [PubMed] [Google Scholar]
  • Bartal C, Danon A, Schlaeffer F, Reisenberg K, Alkan M, Smoliakov R, Sidi A, Almog Y, (2003) Pharmacokinetic dosing of aminoglycosides: a controlled trial. Am J Med 114: 194–198 [CrossRef] [PubMed] [Google Scholar]
  • Perazella MA, (2012) Drug use and nephrotoxicity in the intensive care unit. Kidney Int 81: 1172–1178 [CrossRef] [PubMed] [Google Scholar]
  • Papadopoulos J, Smithburger PL, (2010) Common drug interactions leading to adverse drug events in the intensive care unit: management and pharmacokinetic considerations. Crit Care Med 38: S126–135 [CrossRef] [PubMed] [Google Scholar]
  • Schetz M, Dasta J, Goldstein S, Golper T, (2005) Drug-induced acute kidney injury. Curr Opin Crit Care 11: 555–565 [CrossRef] [PubMed] [Google Scholar]
  • Ho KM, Power BM, (2010) Benefits and risks of furosemide in acute kidney injury. Anaesthesia 65: 283–293. [CrossRef] [PubMed] [Google Scholar]
  • Ho KM, Sheridan DJ, (2006) Meta-analysis of frusemide to prevent or treat acute renal failure. BMJ 333: 420 [CrossRef] [PubMed] [Google Scholar]
  • Haase M, Haase-Fielitz A, Plass M, Kuppe H, Hetzer R, Hannon C, Murray PT, Bailey MJ, Bellomo R, Bagshaw SM, (2013) Prophylactic perioperative sodium bicarbonate to prevent acute kidney injury following open heart surgery: a multicenter double-blinded randomized controlled trial. PLoS Med 10: e1001426 [CrossRef] [PubMed] [Google Scholar]
  • Kristeller JL, Zavorsky GS, Prior JE, Keating DA, Brady MA, Romaldini TA, Hickman TL, Stahl RF, (2013) Lack of effectiveness of sodium bicarbonate in preventing kidney injury in patients undergoing cardiac surgery: a randomized controlled trial. Pharmacotherapy 33: 710–717 [CrossRef] [PubMed] [Google Scholar]
  • McGuinness SP, Parke RL, Bellomo R, Van Haren FM, Bailey M, (2013) Sodium bicarbonate infusion to reduce cardiac surgery-associated acute kidney injury: a phase II multicenter double-blind randomized controlled trial. Crit Care Med 41: 1599–1607. [CrossRef] [PubMed] [Google Scholar]
  • Hewitt J, Uniacke M, Hansi NK, Venkat-Raman G, McCarthy K, (2012) Sodium bicarbonate supplements for treating acute kidney injury. Cochrane Database Syst Rev: CD009204 [Google Scholar]
  • Bosch X, Poch E, Grau JM, (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 361: 62–72 [CrossRef] [PubMed] [Google Scholar]
  • Chatzizisis YS, Misirli G, Hatzitolios AI, Giannoglou GD, (2008) The syndrome of rhabdomyolysis: complications and treatment. Eur J Intern Med 19: 568–574 [CrossRef] [PubMed] [Google Scholar]
  • Scharman EJ, Troutman WG, (2013)Prevention of kidney injury following rhabdomyolysis: a systematic review. Ann Pharmacother 47: 90–105 [CrossRef] [PubMed] [Google Scholar]
  • Shimazu T, Yoshioka T, Nakata Y, Ishikawa K, Mizushima Y, Morimoto F, Kishi M, Takaoka M, Tanaka H, Iwai A, Hiraide A, (1997) Fluid resuscitation and systemic complications in crush syndrome: 14 Hanshin-Awaji earthquake patients. J Trauma 42: 641–646 [CrossRef] [PubMed] [Google Scholar]
  • Gunal AI, Celiker H, DogukanA Ozalp G, Kirciman E, Simsekli H, Gunay I, Demircin M, Belhan O, Yildirim MA, Sever MS, (2004) Early and vigorous fluid resuscitation prevents acute renal failure in the crush victims of catastrophic earthquakes. J Am Soc Nephrol 15: 1862–1867 [CrossRef] [PubMed] [Google Scholar]
  • Homsi E, Barreiro MF, Orlando JM, Higa EM, (1997) Prophylaxis of acute renal failure in patients with rhabdomyolysis. Ren Fail 19: 283–288 [CrossRef] [PubMed] [Google Scholar]
  • Brown CV, Rhee P, Chan L, Evans K, Demetriades D, Velmahos GC, (2004) Preventing renal failure in patients with rhabdomyolysis: do bicarbonate and mannitol make a difference? J Trauma 56: 1191–1196 [CrossRef] [PubMed] [Google Scholar]
  • Cho YS, Lim H, Kim SH, (2007) Comparison of lactated Ringer’s solution and 0.9% saline in the treatment of rhabdomyolysis induced by doxylamine intoxication. Emerg Med J 24: 276–280 [CrossRef] [PubMed] [Google Scholar]
  • Yallop KG, Sheppard SV, Smith DC, (2008) The effect of mannitol on renal function following cardio-pulmonary bypass in patients with normal pre-operative creatinine. Anaesthesia 63: 576–582 [CrossRef] [PubMed] [Google Scholar]
  • Smith MN, Best D, Sheppard SV, Smith DC, (2008) The effect of mannitol on renal function after cardiopulmonary bypass in patients with established renal dysfunction. Anaesthesia 63: 701–704 [CrossRef] [PubMed] [Google Scholar]
  • Majumdar SR, Kjellstrand CM, Tymchak WJ, Hervas-Malo M, Taylor DA, Teo KK, (2009) Forced euvolemic diuresis with mannitol and furosemide for prevention of contrast-induced nephropathy in patients with CKD undergoing coronary angiography: a randomized controlled trial. Am J Kidney Dis 54: 602–609 [CrossRef] [PubMed] [Google Scholar]
  • Friedrich JO, Adhikari N, Herridge MS, Beyene J, (2005) Meta-analysis: low-dose dopamine increases urine output but does not prevent renal dysfunction or death. Ann Intern Med 142: 510–524. [CrossRef] [PubMed] [Google Scholar]
  • Kellum JA, MD J, (2001) Use of dopamine in acute renal failure: a meta-analysis. Crit Care Med 29: 1526–1531 [CrossRef] [PubMed] [Google Scholar]
  • Bellomo R, Chapman M, Finfer S, Hickling K, Myburgh J, (2000) Low-dose dopamine in patients with early renal dysfunction: a placebo-controlled randomised trial. Australian and New Zealand Intensive Care Society (ANZICS) Clinical Trials Group. Lancet 356: 2139–2143 [CrossRef] [PubMed] [Google Scholar]
  • Stone GW, McCullough PA, Tumlin JA, Lepor NE, Madyoon H, Murray P, Wang A, Chu AA, Schaer GL, Stevens M, Wilensky RL, O’Neill WW, Investigators C, (2003) Fenoldopam mesylate for the prevention of contrast-induced nephropathy: a randomized controlled trial. JAMA 290: 2284–2291 [CrossRef] [PubMed] [Google Scholar]
  • Caimmi PP, Pagani L, Micalizzi E, Fiume C, Guani S, Bernardi M, Parodi F, Cordero G, Fregonara M, Kapetanakis E, Panella M, Degasperis C, (2003) Fenoldopam for renal protection in patients undergoing cardiopulmonary bypass. J Cardiothorac Vasc Anesth 17: 491–494 [CrossRef] [PubMed] [Google Scholar]
  • Bove T, Landoni G, Calabro MG, Aletti G, Marino G, Cerchierini E, Crescenzi G, Zangrillo A, (2005) Renoprotective action of fenoldopam in high-risk patients undergoing cardiac surgery: a prospective, double-blind, randomized clinical trial. Circulation 111: 3230–3235 [CrossRef] [PubMed] [Google Scholar]
  • Brienza N, Malcangi V, Dalfino L, Trerotoli P, Guagliardi C, Bortone D, Faconda G, Ribezzi M, Ancona G, Bruno F, Fiore T, (2006) A comparison between fenoldopam and low-dose dopamine in early renal dysfunction of critically ill patients. Crit Care Med 34: 707–714 [CrossRef] [PubMed] [Google Scholar]
  • Ranucci M, Soro G, Barzaghi N, Locatelli A, Giordano G, Vavassori A, Manzato A, Melchiorri C, Bove T, Juliano G, Uslenghi MF, (2004) Fenoldopam prophylaxis of postoperative acute renal failure in high-risk cardiac surgery patients. Ann Thorac Surg 78: 1332–1337; discussion 1337–1338 [CrossRef] [Google Scholar]
  • Tumlin JA, Finkel KW, Murray PT, Samuels J, Cotsonis G, Shaw AD, (2005) Fenoldopam mesylate in early acute tubular necrosis: a randomized, double-blind, placebo-controlled clinical trial. Am J Kidney Dis 46: 26–34 [CrossRef] [PubMed] [Google Scholar]
  • Morelli A, Ricci Z, Bellomo R, Ronco C, Rocco M, Conti G, De Gaetano A, Picchini U, Orecchioni A, Portieri M, Coluzzi F, Porzi P, Serio P, Bruno A, Pietropaoli P, (2005) Prophylactic fenoldopam for renal protection in sepsis: a randomized, double-blind, placebo-controlled pilot trial. Crit Care Med 33: 2451–2456 [CrossRef] [PubMed] [Google Scholar]
  • Patel NN, Rogers CA, Angelini GD, Murphy GJ, (2011) Pharmacological therapies for the prevention of acute kidney injury following cardiac surgery: a systematic review. Heart Fail Rev 16: 553–567 [CrossRef] [PubMed] [Google Scholar]
  • Landoni G, Biondi-Zoccai GG, Marino G, Bove T, Fochi O, Maj G, Calabro MG, Sheiban I, Tumlin JA, Ranucci M, Zangrillo A, (2008) Fenoldopam reduces the need for renal replacement therapy and in-hospital death in cardiovascular surgery: a meta-analysis. J Cardiothorac Vasc Anesth 22: 27–33 [CrossRef] [PubMed] [Google Scholar]
  • Landoni G, Biondi-Zoccai GG, Tumlin JA, Bove T, De Luca M, Calabro MG, Ranucci M, Zangrillo A, (2007) Beneficial impact of fenoldopam in critically ill patients with or at risk for acute renal failure: a meta-analysis of randomized clinical trials. Am J Kidney Dis 49: 56–68 [CrossRef] [PubMed] [Google Scholar]
  • Zangrillo A, Biondi-Zoccai GG, Frati E, Covello RD, Cabrini L, Guarracino F, Ruggeri L, Bove T, Bignami E, Landoni G, (2012) Fenoldopam and acute renal failure in cardiac surgery: a meta-analysis of randomized placebo-controlled trials. J Cardiothorac Vasc Anesth 26: 407–413 [CrossRef] [PubMed] [Google Scholar]
  • Sackner-Bernstein JD, Skopicki HA, Aaronson KD, (2005) Risk of worsening renal function with nesiritide in patients with acutely decompensated heart failure. Circulation 111: 1487–1491 [CrossRef] [PubMed] [Google Scholar]
  • Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK, (2009) Atrial natriuretic peptide for management of acute kidney injury: a systematic review and meta-analysis. Clin J Am Soc Nephrol 4: 261–272 [CrossRef] [PubMed] [Google Scholar]
  • Mitaka C, Kudo T, Haraguchi G, Tomita M, (2011) Cardiovascular and renal effects of carperitide and nesiritide in cardiovascular surgery patients: a systematic review and meta-analysis. Crit Care 15: R258 [CrossRef] [PubMed] [Google Scholar]
  • Nigwekar SU, Navaneethan SD, Parikh CR, Hix JK. (2009) Atrial natriuretic peptide for preventing and treating acute kidney injury. Cochrane Database Syst Rev: CD006028 [Google Scholar]
  • Adabag AS, Ishani A, Bloomfield HE, Ngo AK, Wilt TJ, (2009) Efficacy of N-acetylcysteine in preventing renal injury after heart surgery: a systematic review of randomized trials. Eur Heart J 30: 1910–1917 [CrossRef] [PubMed] [Google Scholar]
  • Duong MH, MacKenzie TA, Malenka DJ, (2005) N-acetylcysteine prophylaxis significantly reduces the risk of radiocontrast-induced nephropathy: comprehensive meta-analysis. Catheter Cardiovasc Interv 64: 471–479. [CrossRef] [PubMed] [Google Scholar]
  • Ho KM, Morgan DJ, (2009) Meta-analysis of N-acetylcysteine to prevent acute renal failure after major surgery. Am J Kidney Dis 53: 33–40. [CrossRef] [PubMed] [Google Scholar]
  • Nigwekar SU, Kandula P, (2009) N-acetylcysteine in cardiovascular-surgery-associated renal failure: a meta-analysis. Ann Thorac Surg 87: 139–147 [CrossRef] [Google Scholar]
  • Hirschberg R, Kopple J, Lipsett P, Benjamin E, Minei J, Albertson T, Munger M, Metzler M, Zaloga G, Murray M, Lowry S, Conger J, McKeown W, O’Shea M, Baughman R, Wood K, Haupt M, Kaiser R, Simms H, Warnock D, Summer W, Hintz R, Myers B, Haenftling K, Capra W, Pike M, Guler HP, (1999) Multicenter clinical trial of recombinant human insulin-like growth factor I in patients with acute renal failure. Kidney Int 55: 2423–2432 [CrossRef] [PubMed] [Google Scholar]
  • Hladunewich MA, Corrigan G, Derby GC, Ramaswamy D, Kambham N, Scandling JD, Myers BD, (2003) A randomized, placebo-controlled trial of IGF-1 for delayed graft function: a human model to study postischemic ARF. Kidney Int 64: 593–602 [CrossRef] [PubMed] [Google Scholar]
  • Endre ZH, Walker RJ, Pickering JW, Shaw GM, Frampton CM, Henderson SJ, Hutchison R, Mehrtens JE, Robinson JM, Schollum JB, Westhuyzen J, Celi LA, McGinley RJ, Campbell IJ, George PM, (2010) Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the EARLYARF trial). Kidney Int 77: 1020–1030 [CrossRef] [PubMed] [Google Scholar]
  • Song YR, Lee T, You SJ, Chin HJ, Chae DW, Lim C, Park KH, Han S, Kim JH, Na KY, (2009) Prevention of acute kidney injury by erythropoietin in patients undergoing coronary artery bypass grafting: a pilot study. Am J Nephrol 30: 253–260 [CrossRef] [PubMed] [Google Scholar]
  • Gottlieb SS, Brater DC, Thomas I, Havranek E, Bourge R, Goldman S, Dyer F, Gomez M, Bennett D, Ticho B, Beckman E, Abraham WT, (2002) BG9719 (CVT-124), an A1 adenosine receptor antagonist, protects against the decline in renal function observed with diuretic therapy. Circulation 105: 1348–1353 [CrossRef] [PubMed] [Google Scholar]
  • Givertz MM, Massie BM, Fields TK, Pearson LL, Dittrich HC, Investigators CKI, (2007) The effects of KW-3902, an adenosine A1-receptor antagonist, on diuresis and renal function in patients with acute decompensated heart failure and renal impairment or diuretic resistance. J Am Coll Cardiol 50: 1551–1560 [CrossRef] [PubMed] [Google Scholar]
  • Massie BM, O’Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, Weatherley BD, Cleland JG, Givertz MM, Voors A, DeLucca P, Mansoor GA, Salerno CM, Bloomfield DM, Dittrich HC; Investigators P, PROTECT Investigators and Committees, (2010) Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med 363: 1419–1428 [CrossRef] [PubMed] [Google Scholar]
  • Howard SC, Jones DP, Pui CH, (2011) The tumor lysis syndrome. N Engl J Med 364: 1844–1854 [CrossRef] [PubMed] [Google Scholar]
  • Mikkelsen TS, Mamoudou AD, Tuckuviene R, Wehner PS, Schroeder H, (2014) Extended duration of prehydration does not prevent nephrotoxicity or delayed drug elimination in high-dose methotrexate infusions: a prospectively randomized cross-over study. Pediatr Blood Cancer 61: 297–301 [CrossRef] [PubMed] [Google Scholar]
  • Sand TE, Jacobsen S, (1981) Effect of urine pH and flow on renal clearance of methotrexate. Eur J Clin Pharmacol 19: 453–456 [CrossRef] [PubMed] [Google Scholar]
  • Christensen ML, Rivera GK, Crom WR, Hancock ML, Evans WE, (1988) Effect of hydration on methotrexate plasma concentrations in children with acute lymphocytic leukemia. J Clin Oncol 6: 797–801 [CrossRef] [PubMed] [Google Scholar]
  • Kinoshita A, Kurosawa Y, Kondoh K, Suzuki T, Manabe A, Inukai T, Sugita K, Nakazawa S, (2003) Effects of sodium in hydration solution on plasma methotrexate concentrations following high-dose methotrexate in children with acute lymphoblastic leukemia. Cancer Chemother Pharmacol 51: 256–260 [PubMed] [Google Scholar]
  • Relling MV, Fairclough D, Ayers D, Crom WR, Rodman JH, Pui CH, Evans WE, (1994) Patient characteristics associated with high-risk methotrexate concentrations and toxicity. J Clin Oncol 12: 1667–1672 [CrossRef] [PubMed] [Google Scholar]
  • Darmon M, Vincent F, Camous L, Canet E, Bonmati C, Braun T, Caillot D, Cornillon J, Dimicoli S, Etienne A, Galicier L, Garnier A, Girault S, Hunault-Berger M, Marolleau JP, Moreau P, Raffoux E, Recher C, Thiebaud A, Thieblemont C, Azoulay E; Groupe de Recherche en Réanimation Respiratoire et Onco-Hématologique (GRRR-OH), (2013) Tumour lysis syndrome and acute kidney injury in high-risk haematology patients in the rasburicase era. A prospective multicentre study from the Groupe de recherche en réanimation respiratoire et oncohématologique. Br J Haematol 162: 489–497 [CrossRef] [PubMed] [Google Scholar]
  • Galardy PJ, Hochberg J, Perkins SL, Harrison L, Goldman S, Cairo MS, (2013) Rasburicase in the prevention of laboratory clinical tumour lysis syndrome in children with advanced mature B-NHL: a Children’s Oncology Group report. Br J Haematol 163: 365–372 [CrossRef] [PubMed] [Google Scholar]
  • Shimada M, Johnson RJ, May WS Jr, Lingegowda V, Sood P, Nakagawa T, Van QC, Dass B, Ejaz AA, (2009) A novel role for uric acid in acute kidney injury associated with tumour lysis syndrome. Nephrol Dial Transplant 24: 2960–2964 [CrossRef] [PubMed] [Google Scholar]
  • Lopez-Olivo MA, Pratt G, Palla SL, Salahudeen A, (2013) Rasburicase in tumor lysis syndrome of the adult: a systematic review and meta-analysis. Am J Kidney Dis 62: 481–492 [CrossRef] [PubMed] [Google Scholar]
  • Cheuk DK, Chiang AK, Chan GC, Ha SY, (2010) Urate oxidase for the prevention and treatment of tumor lysis syndrome in children with cancer. Cochrane Database Syst Rev: CD006945 [Google Scholar]
  • Cortes J, Moore JO, Maziarz RT, Wetzler M, Craig M, Matous J, Luger S, Dey BR, Schiller GJ, Pham D, Abboud CN, Krishnamurthy M, Brown A Jr, Laadem A, Seiter K, (2010) Control of plasma uric acid in adults at risk for tumor Lysis syndrome: efficacy and safety of rasburicase alone and rasburicase followed by allopurinol compared with allopurinol alone–results of a multicenter phase III study. J Clin Oncol 28: 4207–4213 [CrossRef] [PubMed] [Google Scholar]
  • Goldman SC, Holcenberg JS, Finklestein JZ, Hutchinson R, Kreissman S, Johnson FL, Tou C, Harvey E, Morris E, Cairo MS, (2001) A randomized comparison between rasburicase and allopurinol in children with lymphoma or leukemia at high risk for tumor lysis. Blood 97: 2998–3003 [CrossRef] [Google Scholar]
  • Coiffier B, Altman A, Pui CH, Younes A, Cairo MS, (2008) Guidelines for the management of pediatric and adult tumor lysis syndrome: an evidence-based review. J Clin Oncol 26: 2767–2778 [CrossRef] [PubMed] [Google Scholar]
  • Cairo MS, Coiffier B, Reiter A, Younes A, Panel TLSE, (2010) Recommendations for the evaluation of risk and prophylaxis of tumour lysis syndrome (TLS) in adults and children with malignant diseases: an expert TLS panel consensus. Br J Haematol 149: 578–586 [CrossRef] [PubMed] [Google Scholar]
  • Will A, Tholouli E, (2011) The clinical management of tumour lysis syndrome in haematological malignancies. Br J Haematol 154: 3–13 [CrossRef] [PubMed] [Google Scholar]
  • Druml W, (2005) Nutritional management of acute renal failure. J Ren Nutr 15: 63–70 [CrossRef] [PubMed] [Google Scholar]
  • Fiaccadori E, Cremaschi E, Regolisti G, (2011) Nutritional assessment and delivery in renal replacement therapy patients. Semin Dial 24: 169–175 [CrossRef] [PubMed] [Google Scholar]
  • Cano NJ, Aparicio M, Brunori G, Carrero JJ, Cianciaruso B, Fiaccadori E, Lindholm B, Teplan V, Fouque D, Guarnieri G, Espen, (2009) ESPEN Guidelines on parenteral nutrition: adult renal failure. Clin Nutr 28: 401–414 [CrossRef] [PubMed] [Google Scholar]
  • Fiaccadori E, Parenti E, Maggiore U, (2008) Nutritional support in acute kidney injury. J Nephrol 21: 645–656 [PubMed] [Google Scholar]
  • Bellomo R, Tan HK, Bhonagiri S, Gopal I, Seacombe J, Daskalakis M, Boyce N, (2002) High protein intake during continuous hemodiafiltration: impact on amino acids and nitrogen balance. Int J Artif Organs 25: 261–268 [CrossRef] [PubMed] [Google Scholar]
  • Berger MM, Shenkin A, Revelly JP, Roberts E, Cayeux MC, Baines M, Chiolero RL, (2004) Copper, selenium, zinc, and thiamine balances during continuous venovenous hemodiafiltration in critically ill patients. Am J Clin Nutr 80: 410–416 [CrossRef] [PubMed] [Google Scholar]
  • Mammen C, Al Abbas A, Skippen P, Nadel H, Levine D, Collet JP, Matsell DG, (2012) Long-term risk of CKD in children surviving episodes of acute kidney injury in the intensive care unit: a prospective cohort study. Am J Kidney Dis 59: 523–530 [CrossRef] [PubMed] [Google Scholar]
  • Wald R, Quinn RR, Adhikari NK, Burns KE, Friedrich JO, Garg AX, Harel Z, Hladunewich MA, Luo J, Mamdani M, Perl J, Ray JG; University of Toronto Acute Kidney Injury Research G, (2012) Risk of chronic dialysis and death following acute kidney injury. Am J Med 125: 585–593. [CrossRef] [Google Scholar]
  • Pannu N, James M, Hemmelgarn B, Klarenbach S; Alberta Kidney Disease Network, , (2013) Association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin J Am Soc Nephrol 8: 194–202. [CrossRef] [PubMed] [Google Scholar]
  • Harel Z, Wald R, Bargman JM, Mamdani M, Etchells E, Garg AX, Ray JG, Luo J, Li P, Quinn RR, Forster A, Perl J, Bell CM, (2013) Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int 83: 901–908 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.