Accès gratuit
Numéro
Méd. Intensive Réa.
Volume 26, Numéro 3, Mai 2017
Infectieux
Page(s) 224 - 232
Section Mise au point / Update
DOI https://doi.org/10.1007/s13546-017-1267-y
Publié en ligne 21 mars 2017
  • Karam G, Chastre J, Wilcox MH, Vincent JL, (2016) Antibiotic strategies in the era of multidrug resistance. Crit Care 20: 136 [CrossRef] [PubMed] [Google Scholar]
  • Boucher HW, Talbot GH, Benjamin DKJr, Bradley J, Guidos RJ, Jones RN, Murray BE, Bonomo RA, Gilbert D, Infectious Diseases Society of A, (2013) 10X′20 Progress — development of new drugs active against Gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis 56: 1685–1694 [CrossRef] [PubMed] [Google Scholar]
  • Spellberg B, (2014) The future of antibiotics. Crit Care 18: 228 [CrossRef] [PubMed] [Google Scholar]
  • Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P, (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32: 234–258 [CrossRef] [PubMed] [Google Scholar]
  • Murano K, Yamanaka T, Toda A, Ohki H, Okuda S, Kawabata K, Hatano K, Takeda S, Akamatsu H, Itoh K, Misumi K, Inoue S, Takagi T, (2008) Structural requirements for the stability of novel cephalosporins to AmpC beta-lactamase based on 3D-structure. Bioorg Med Chem 16: 2261–2275 [CrossRef] [PubMed] [Google Scholar]
  • Castanheira M, Mills JC, Farrell DJ, Jones RN, (2014) Mutation-driven beta-lactam resistance mechanisms among contemporary ceftazidime-nonsusceptible Pseudomonas aeruginosa isolates from US hospitals. Antimicrob Agents Chemother 58: 6844–6850 [CrossRef] [PubMed] [Google Scholar]
  • Zhanel GG, Lawson CD, Adam H, Schweizer F, Zelenitsky S, Lagace-Wiens PR, Denisuik A, Rubinstein E, Gin AS, Hoban DJ, Lynch JP3rd, Karlowsky JA, (2013) Ceftazidime–avibactam: a novel cephalosporin/beta-lactamase inhibitor combination. Drugs 73: 159–177 [CrossRef] [PubMed] [Google Scholar]
  • Moya B, Beceiro A, Cabot G, Juan C, Zamorano L, Alberti S, Oliver A, (2012) Pan-beta-lactam resistance development in Pseudomonas aeruginosa clinical strains: molecular mechanisms, penicillin-binding protein profiles, and binding affinities. Antimicrob Agents Chemother 56: 4771–4778 [CrossRef] [PubMed] [Google Scholar]
  • van Duin D, Bonomo RA, (2016) Ceftazidime–avibactam and ceftolozane–tazobactam: second-generation beta-lactam/beta-lactamase inhibitor combinations. Clin Infect Dis 63: 234–241 [CrossRef] [PubMed] [Google Scholar]
  • Papp-Wallace KM, Bonomo RA, (2016) New beta-lactamase inhibitors in the clinic. Infect Dis Clin North Am 30: 441–464 [CrossRef] [PubMed] [Google Scholar]
  • Buehrle DJ, Shields RK, Chen L, Hao B, Press EG, Alkrouk A, Potoski BA, Kreiswirth BN, Clancy CJ, Nguyen MH, (2016) Evaluation of the in vitro activity of ceftazidime–avibactam and ceftolozane–tazobactam against meropenem-resistant Pseudomonas aeruginosa isolates. Antimicrob Agents Chemother 60: 3227–3231 [CrossRef] [PubMed] [Google Scholar]
  • Takeda S, Nakai T, Wakai Y, Ikeda F, Hatano K, (2007) In vitro and in vivo activities of a new cephalosporin, FR264205, against Pseudomonas aeruginosa. Antimicrob Agents Chemother 51: 826–830 [CrossRef] [PubMed] [Google Scholar]
  • Sader HS, Farrell DJ, Flamm RK, Jones RN, (2014) Ceftolozane–tazobactam activity tested against aerobic Gram-negative organisms isolated from intra-abdominal and urinary tract infections in European and United States hospitals (2012). J Infect 69: 266–277 [CrossRef] [PubMed] [Google Scholar]
  • Farrell DJ, Sader HS, Flamm RK, Jones RN, (2014) Ceftolozane–tazobactam activity tested against Gram-negative bacterial isolates from hospitalised patients with pneumonia in US and European medical centres (2012). Int J Antimicrob Agents 43: 533–539 [CrossRef] [PubMed] [Google Scholar]
  • Titelman E, Karlsson IM, Ge Y, Giske CG, (2011) In vitro activity of CXA-101 plus tazobactam (CXA-201) against CTX-M-14- and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae. Diagn Microbiol Infect Dis 70: 137–141 [Google Scholar]
  • Scott LJ, (2016) Ceftolozane–tazobactam: a review in complicated intra-abdominal and urinary tract infections. Drugs 76: 231–242 [PubMed] [Google Scholar]
  • http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_6.0_Breakpoint_table.pdf [Google Scholar]
  • Chandorkar G, Huntington JA, Gotfried MH, Rodvold KA, Umeh O, (2012) Intrapulmonary penetration of ceftolozane–tazobactam and piperacillin–tazobactam in healthy adult subjects. J Antimicrob Chemother 67: 2463–2469 [PubMed] [Google Scholar]
  • Chandorkar G, Xiao A, Mouksassi MS, Hershberger E, Krishna G, (2015) Population pharmacokinetics of ceftolozane–tazobactam in healthy volunteers, subjects with varying degrees of renal function and patients with bacterial infections. J Clin Pharmacol 55: 230–239 [CrossRef] [PubMed] [Google Scholar]
  • Wise R, Andrews JM, Ashby JP, Thornber D, (1991) In vitro activity of a catechol-substituted cephalosporin, GR69153. Antimicrob Agents Chemother 35: 329–334 [CrossRef] [PubMed] [Google Scholar]
  • Kuti JL, Ghazi IM, Quintiliani RJr, Shore E, Nicolau DP, (2016) Treatment of multidrug-resistant Pseudomonas aeruginosa with ceftolozane–tazobactam in a critically ill patient receiving continuous venovenous haemodiafiltration. Int J Antimicrob Agents 48: 342–343 [CrossRef] [PubMed] [Google Scholar]
  • Jacqueline C, Roquilly A, Desessard C, Boutoille D, Broquet A, Le Mabecque V, Amador G, Potel G, Caillon J, Asehnoune K, (2013) Efficacy of ceftolozane in a murine model of Pseudomonas aeruginosa acute pneumonia: in vivo antimicrobial activity and impact on host inflammatory response. J Antimicrob Chemother 68: 177–183 [PubMed] [Google Scholar]
  • Wagenlehner FM, Umeh O, Steenbergen J, Yuan G, Darouiche RO, (2015) Ceftolozane–tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet 385: 1949–1956 [CrossRef] [PubMed] [Google Scholar]
  • Lucasti C, Hershberger E, Miller B, Yankelev S, Steenbergen J, Friedland I, Solomkin J, (2014) Multicenter, double-blind, randomized, phase 2 trial to assess the safety and efficacy of ceftolozane–tazobactam plus metronidazole compared with meropenem in adult patients with complicated intra-abdominal infections. Antimicrob Agents Chemother 58: 5350–5357 [CrossRef] [PubMed] [Google Scholar]
  • Solomkin J, Hershberger E, Miller B, Popejoy M, Friedland I, Steenbergen J, Yoon M, Collins S, Yuan G, Barie PS, Eckmann C, (2015) Ceftolozane–tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: results from a randomized, double-blind, phase 3 trial (ASPECT-cIAI). Clin Infect Dis 60: 1462–1471 [CrossRef] [PubMed] [Google Scholar]
  • Popejoy MW, Paterson DL, Cloutier D, Huntington JA, Miller B, Bliss CA, Steenbergen JN, Hershberger E, Umeh O, Kaye KS, (2017) Efficacy of ceftolozane–tazobactam against urinary tract and intra-abdominal infections caused by ESBL-producing Escherichia coli and Klebsiella pneumoniae: a pooled analysis of phase 3 clinical trials. J Antimicrob Chemother 72: 268–272 [PubMed] [Google Scholar]
  • HAS, (2016) In: Editor (ed) (eds) Book., City, http://www.has-sante.fr/portail/upload/docs/evamed/CT-14850_ZERBAXA_PIC_INS_Avis3_CT14850.pdf [Google Scholar]
  • Montravers P, Dupont H, Leone M, Constantin JM, Mertes PM, Société française d’anesthésie et de réanimation, Société de réanimation de langue française, Laterre PF, Misset B, Société de pathologie infectieuse de langue française, Bru JP, Gauzit R, Sotto A, Association française de chirurgie, Brigand C, Hamy A, Société française de chirurgie digestive, Tuech JJ, (2015) Guidelines for management of intra-abdominal infections. Anaesth Crit Care Pain Med 34: 117–130 [CrossRef] [PubMed] [Google Scholar]
  • 2015) Recommandations SPILF infections urinaires. In: Editor (ed) (eds) Book Recommandations SPILF infections urinaires. City, http://www.infectiologie.com/UserFiles/File/spilf/recos/infections-urinaires-spilf.pdf [Google Scholar]
  • Malottke R, Potel J (1985) Antibacterial activity of temocillin. Drugs 29: 67–73 [PubMed] [Google Scholar]
  • Bolivar R, Weaver SS, Bodey GP, (1982) Comparative in vitro study of temocillin (BRL 17421), a new penicillin. Antimicrob Agents Chemother 21: 641–645 [CrossRef] [PubMed] [Google Scholar]
  • Livermore DM, Tulkens PM, (2009) Temocillin revived. J Antimicrob Chemother 63: 243–245 [PubMed] [Google Scholar]
  • Clarke AM, Zemcov SJ, (1983) Comparative in vitro activity of temocillin (BRL 17421), a new penicillin. J Antimicrob Chemother 11: 319–324 [PubMed] [Google Scholar]
  • Rodriguez-Villalobos H, Malaviolle V, Frankard J, de Mendonca R, Nonhoff C, Struelens MJ, (2006) In vitro activity of temocillin against extended spectrum beta-lactamase-producing Escherichia coli. J Antimicrob Chemother 57: 771–774 [PubMed] [Google Scholar]
  • Glupczynski Y, Huang TD, Berhin C, Claeys G, Delmee M, Ide L, Ieven G, Pierard D, Rodriguez-Villalobos H, Struelens M, Vaneldere J, (2007) In vitro activity of temocillin against prevalent extended-spectrum beta-lactamases producing Enterobacteriaceae from Belgian intensive care units. Eur J Clin Microbiol Infect Dis 26: 777–783 [PubMed] [Google Scholar]
  • Livermore DM, Hope R, Fagan EJ, Warner M, Woodford N, Potz N, (2006) Activity of temocillin against prevalent ESBL- and AmpC-producing Enterobacteriaceae from south-east England. J Antimicrob Chemother 57: 1012–1014 [PubMed] [Google Scholar]
  • Adams-Haduch JM, Potoski BA, Sidjabat HE, Paterson DL, Doi Y, (2009) Activity of temocillin against KPC-producing Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother 53: 2700–2701 [CrossRef] [PubMed] [Google Scholar]
  • Woodford N, Pike R, Meunier D, Loy R, Hill R, Hopkins KL, (2014) In vitro activity of temocillin against multidrug-resistant clinical isolates of Escherichia coli, Klebsiella spp. and Enterobacter spp., and evaluation of high-level temocillin resistance as a diagnostic marker for OXA-48 carbapenemase. J Antimicrob Chemother 69: 564–567 [PubMed] [Google Scholar]
  • Soubirou J, (2013) Témocilline, une alternative aux carbapénèmes pour traiter les infections à entérobactéries résistantes aux C3G ? J Anti-Infect 15: 60–70 [CrossRef] [Google Scholar]
  • Slocombe B, Basker MJ, Bentley PH, Clayton JP, Cole M, Comber KR, Dixon RA, Edmondson RA, Jackson D, Merrikin DJ, Sutherland R, (1981) BRL 17421, a novel beta-lactam antibiotic, highly resistant to beta-lactamases, giving high and prolonged serum levels in humans. Antimicrob Agents Chemother 20: 38–46 [CrossRef] [PubMed] [Google Scholar]
  • Vanstone GL, Dilley R, Schwenk S, Williams A, Balakrishnan I, (2013) Temocillin disc diffusion susceptibility testing by EUCAST methodology. J Antimicrob Chemother 68: 2688–2689 [PubMed] [Google Scholar]
  • Patel TA, Dilley R, Williams A, Vanstone GL, Balakrishnan I, (2013) Comparison of the Phoenix Automated System, the Etest® method and broth microdilution in determining temocillin susceptibility of Enterobacteriaceae. J Antimicrob Chemother 68: 1685–1686 [PubMed] [Google Scholar]
  • Hampel B, Feike M, Koeppe P, Lode H, (1985) Pharmacokinetics of temocillin in volunteers. Drugs 29: 99–102 [PubMed] [Google Scholar]
  • Lockley MR, Brown RM, Wise R, (1985) Pharmacokinetics and tissue penetration of temocillin. Drugs 29: 106–108 [PubMed] [Google Scholar]
  • Bruckner O, Trautmann M, Borner K, (1985) A study of the penetration of temocillin in the cerebrospinal fluid. Drugs 29: 162–166 [Google Scholar]
  • De Jongh R, Hens R, Basma V, Mouton JW, Tulkens PM, Carryn S, (2008) Continuous versus intermittent infusion of temocillin, a directed spectrum penicillin for intensive care patients with nosocomial pneumonia: stability, compatibility, population pharmacokinetic studies and breakpoint selection. J Antimicrob Chemother 61: 382–388 [PubMed] [Google Scholar]
  • Laterre PF, Wittebole X, Van de Velde S, Muller AE, Mouton JW, Carryn S, Tulkens PM, Dugernier T, (2015) Temocillin (6 g daily) in critically ill patients: continuous infusion versus three times daily administration. J Antimicrob Chemother 70: 891–898 [PubMed] [Google Scholar]
  • Boelaert J, Daneels R, Schurgers M, Mellows G, Swaisland AJ, Lambert AM, Van Landuyt HW, (1985) Effect of renal function and dialysis on temocillin pharmacokinetics. Drugs 29: 109–113 [Google Scholar]
  • Balakrishnan I, Awad-El-Kariem FM, Aali A, Kumari P, Mulla R, Tan B, Brudney D, Ladenheim D, Ghazy A, Khan I, Virgincar N, Iyer S, Carryn S, Van de Velde S, (2011) Temocillin use in England: clinical and microbiological efficacies in infections caused by extended-spectrum and/or derepressed AmpC beta-lactamase-producing Enterobacteriaceae. J Antimicrob Chemother 66: 2628–2631 [CrossRef] [PubMed] [Google Scholar]
  • Habayeb H, Sajin B, Patel K, Grundy C, Al-Dujaili A, Van de Velde S, (2015) Amoxicillin plus temocillin as an alternative empiric therapy for the treatment of severe hospital-acquired pneumonia: results from a retrospective audit. Eur J Clin Microbiol Infect Dis 34: 1693–1699 [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.