Accès gratuit
Numéro
Méd. Intensive Réa.
Volume 26, Numéro 3, Mai 2017
Infectieux
Page(s) 207 - 217
Section Mise au point / Update
DOI https://doi.org/10.1007/s13546-017-1271-2
Publié en ligne 6 avril 2017
  • Wilson J, Guy R, Elgohari S, Sheridan E, Davies J, Lamagni T, Pearson A, (2011) Trends in sources of methicillin-resistant Staphylococcus aureus (MRSA) bacteraemia: data from the National mandatory surveillance of MRSA bacteraemia in England, 2006–2009. J Hosp Infect 79: 211–217 [PubMed] [Google Scholar]
  • Chastre J, Blasi F, Masterton RG, Rello J, Torres A, Welte T, (2014) European perspective and update on the management of nosocomial pneumonia due to methicillin-resistant Staphylococcus aureus after more than 10 years of experience with linezolid. Clin Microbiol Infect 20: 19–36 [Google Scholar]
  • Haque NZ, Arshad S, Peyrani P, Ford KD, Perri MB, Jacobsen G, Reyes K, Scerpella EG, Ramirez JA, Zervos MJ, (2012) Analysis of pathogen and host factors related to clinical outcomes in patients with hospital-acquired pneumonia due to methicillin-resistant Staphylococcus aureus. J Clin Microbiol 50: 1640–1644 [PubMed] [Google Scholar]
  • Self WH, Wunderink RG, Williams DJ, Zhu Y, Anderson EJ, Balk RA, Fakhran SS, Chappell JD, Casimir G, Courtney DM, Trabue C, Waterer GW, Bramley A, Magill S, Jain S, Edwards KM, Grijalva CG, (2016) Staphylococcus aureus community-acquired Pneumonia: prevalence, clinical characteristics, and outcomes. Clin Infect Dis 63: 300–309 [CrossRef] [PubMed] [Google Scholar]
  • van Hal SJ, Lodise TP, Paterson DL, (2012) The clinical significance of vancomycin minimum inhibitory concentration in Staphylococcus aureus infections: a systematic review and meta-analysis. Clin Infect Dis 54: 755–771 [CrossRef] [PubMed] [Google Scholar]
  • Satilmis L, Vanhems P, Benet T, (2016) Outbreaks of vancomycin-resistant enterococci in hospital settings: a systematic review and calculation of the basic reproductive number. Infect Control Hosp Epidemiol 37: 289–294 [CrossRef] [PubMed] [Google Scholar]
  • van Hal SJ, Paterson DL, Lodise TP, (2013) Systematic review and meta-analysis of vancomycin-induced nephrotoxicity associated with dosing schedules that maintain trough between 15 and 20 milligrams per liter. Antimicrob Agents Chemother 57: 734–744 [CrossRef] [PubMed] [Google Scholar]
  • Croisier-Bertin D, Hayez D, Da Silva S, Labrousse D, Biek D, Badiou C, Dumitrescu O, Guerard P, Charles PE, Piroth L, Lina G, Vandenesch F, Chavanet P, (2014) In vivo efficacy of ceftaroline–fosamil in a methicillin-resistant Panton-Valentine leukocidin-producing Staphylococcus aureus rabbit pneumonia model. Antimicrob Agents Chemother 58: 1855–1861 [CrossRef] [PubMed] [Google Scholar]
  • An MM, Shen H, Zhang JD, Xu GT, Jiang YY, (2013) Linezolid versus vancomycin for meticillin-resistant Staphylococcus aureus infection: a meta-analysis of randomised controlled trials. Int J Antimicrob Agents 41: 426–433 [CrossRef] [PubMed] [Google Scholar]
  • Burdette SD, Trotman R, (2015) Tedizolid: the first once-daily Oxazolidinone class antibiotic. Clin Infect Dis 61: 1315–1321 [CrossRef] [PubMed] [Google Scholar]
  • Swaney SM, Aoki H, Ganoza MC, Shinabarger DL, (1998) The oxazolidinone linezolid inhibits initiation of protein synthesis in bacteria. Antimicrob Agents Chemother 42: 3251–3255 [PubMed] [Google Scholar]
  • Pfaller MA, Flamm RK, Jones RN, Farrell DJ, Mendes RE, (2016) Activities of tedizolid and linezolid determined by the reference broth microdilution method against 3,032 Gram-positive bacterial isolates collected in Asia-Pacific, Eastern Europe, and Latin American countries in 2014. Antimicrob Agents Chemother 60: 5393–5399 [CrossRef] [PubMed] [Google Scholar]
  • Mendes RE, Deshpande LM, Jones RN, (2014) Linezolid update: stable in vitro activity following more than a decade of clinical use and summary of associated resistance mechanisms. Drug Resist Updat 17: 1–12 [PubMed] [Google Scholar]
  • Klupp EM, Both A, Belmar-Campos C, Buttner H, Konig C, Christopeit M, Christner M, Aepfelbacher M, Rohde H, (2016) Tedizolid susceptibility in linezolid- and vancomycin-resistant Enterococcus faecium isolates. Eur J Clin Microbiol Infect Dis 35: 1957–1961 [PubMed] [Google Scholar]
  • Silva-Del Toro SL, Greenwood-Quaintance KE, Patel R, (2016) In vitro activity of tedizolid against linezolid-resistant staphylococci and enterococci. Diagn Microbiol Infect Dis 85: 102–104 [Google Scholar]
  • Ong V, Flanagan S, Fang E, Dreskin HJ, Locke JB, Bartizal K, Prokocimer P, (2014) Absorption, distribution, metabolism, and excretion of the novel antibacterial prodrug tedizolid phosphate. Drug Metab Dispos 42: 1275–1284 [CrossRef] [PubMed] [Google Scholar]
  • Sahre M, Sabarinath S, Grant M, Seubert C, Deanda C, Prokocimer P, Derendorf H, (2012) Skin and soft tissue concentrations of tedizolid (formerly torezolid), a novel oxazolidinone, following a single oral dose in healthy volunteers. Int J Antimicrob Agents 40: 51–54 [CrossRef] [PubMed] [Google Scholar]
  • Housman ST, Pope JS, Russomanno J, Salerno E, Shore E, Kuti JL, Nicolau DP, (2012) Pulmonary disposition of tedizolid following administration of once-daily oral 200-milligram tedizolid phosphate in healthy adult volunteers. Antimicrob Agents Chemother 56: 2627–2634 [CrossRef] [PubMed] [Google Scholar]
  • Pai MP, (2016) Pharmacokinetics of tedizolid in morbidly obese and covariate-matched nonobese adults. Antimicrob Agents Chemother 60: 4585–4589 [CrossRef] [PubMed] [Google Scholar]
  • Flanagan S, Bartizal K, Minassian SL, Fang E, Prokocimer P, (2013) In vitro, in vivo, and clinical studies of tedizolid to assess the potential for peripheral or central monoamine oxidase interactions. Antimicrob Agents Chemother 57: 3060–3066 [CrossRef] [PubMed] [Google Scholar]
  • Abdelraouf K, Nicolau DP, (2017) Comparative in vivo efficacies of tedizolid in neutropenic versus immunocompetent murine Streptococcus pneumoniae lung infection models. Antimicrob Agents Chemother pii: e01957-16 [Google Scholar]
  • Tessier PR, Keel RA, Hagihara M, Crandon JL, Nicolau DP, (2012) Comparative in vivo efficacies of epithelial lining fluid exposures of tedizolid, linezolid, and vancomycin for methicillin-resistant Staphylococcus aureus in a mouse pneumonia model. Antimicrob Agents Chemother 56: 2342–2346 [CrossRef] [PubMed] [Google Scholar]
  • Keel RA, Tessier PR, Crandon JL, Nicolau DP, (2012) Comparative efficacies of human simulated exposures of tedizolid and linezolid against Staphylococcus aureus in the murine thigh infection model. Antimicrob Agents Chemother 56: 4403–4407 [CrossRef] [PubMed] [Google Scholar]
  • Louie A, Liu W, Kulawy R, Drusano GL, (2011) In vivo pharmacodynamics of torezolid phosphate (TR-701), a new oxazolidinone antibiotic, against methicillin-susceptible and methicillin-resistant Staphylococcus aureus strains in a mouse thigh infection model. Antimicrob Agents Chemother 55: 3453–3460 [CrossRef] [PubMed] [Google Scholar]
  • Drusano GL, Liu W, Kulawy R, Louie A, (2011) Impact of granulocytes on the antimicrobial effect of tedizolid in a mouse thigh infection model. Antimicrob Agents Chemother 55: 5300–5305 [CrossRef] [PubMed] [Google Scholar]
  • Bayer AS, Abdelhady W, Li L, Gonzales R, Xiong YQ, (2016) Comparative efficacies of tedizolid phosphate, linezolid, and vancomycin in a murine model of subcutaneous catheter-related biofilm infection due to methicillin-susceptible and -resistant Staphylococcus aureus. Antimicrob Agents Chemother 60: 5092–5096 [CrossRef] [PubMed] [Google Scholar]
  • Flanagan S, Passarell J, Lu Q, Fiedler-Kelly J, Ludwig E, Prokocimer P, (2014) Tedizolid population pharmacokinetics, exposure response, and target attainment. Antimicrob Agents Chemother 58: 6462–6470 [CrossRef] [PubMed] [Google Scholar]
  • Lee DG, Murakami Y, Andes DR, Craig WA, (2013) Inoculum effects of ceftobiprole, daptomycin, linezolid, and vancomycin with Staphylococcus aureus and Streptococcus pneumoniae at inocula of 10(5) and 10(7) CFU injected into opposite thighs of neutropenic mice. Antimicrob Agents Chemother 57: 1434–1441 [CrossRef] [PubMed] [Google Scholar]
  • Moran GJ, Fang E, Corey GR, Das AF, De Anda C, Prokocimer P, (2014) Tedizolid for 6 days versus linezolid for 10 days for acute bacterial skin and skin-structure infections (ESTABLISH-2): a randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect Dis 14: 696–705 [CrossRef] [PubMed] [Google Scholar]
  • Prokocimer P, De Anda C, Fang E, Mehra P, Das A, (2013) Tedizolid phosphate vs. linezolid for treatment of acute bacterial skin and skin structure infections: the ESTABLISH-1 randomized trial. JAMA 309: 559–569 [CrossRef] [PubMed] [Google Scholar]
  • Prokocimer P, Bien P, Surber J, Mehra P, DeAnda C, Bulitta JB, Corey GR, (2011) Phase 2, randomized, double-blind, dose-ranging study evaluating the safety, tolerability, population pharmacokinetics, and efficacy of oral torezolid phosphate in patients with complicated skin and skin structure infections. Antimicrob Agents Chemother 55: 583–592 [CrossRef] [PubMed] [Google Scholar]
  • Shorr AF, Lodise TP, Corey GR, De Anda C, Fang E, Das AF, Prokocimer P, (2015) Analysis of the phase 3 ESTABLISH trials of tedizolid versus linezolid in acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 59: 864–871 [CrossRef] [PubMed] [Google Scholar]
  • Wunderink RG, Niederman MS, Kollef MH, Shorr AF, Kunkel MJ, Baruch A, McGee WT, Reisman A, Chastre J, (2012) Linezolid in methicillin-resistant Staphylococcus aureus nosocomial pneumonia: a randomized, controlled study. Clin Infect Dis 54: 621–629 [CrossRef] [PubMed] [Google Scholar]
  • Lodise TP, Bidell MR, Flanagan SD, Zasowski EJ, Minassian SL, Prokocimer P, (2016) Characterization of the haematological profile of 21 days of tedizolid in healthy subjects. J Antimicrob Chemother 71: 2553–2558 [PubMed] [Google Scholar]
  • Kalil AC, Metersky ML, Klompas M, Muscedere J, Sweeney DA, Palmer LB, Napolitano LM, O'Grady NP, Bartlett JG, Carratala J, El Solh AA, Ewig S, Fey PD, File TMJr, Restrepo MI, Roberts JA, Waterer GW, Cruse P, Knight SL, Brozek JL, (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63: e61–e111 [CrossRef] [PubMed] [Google Scholar]
  • Long KS, Vester B, (2012) Resistance to linezolid caused by modifications at its binding site on the ribosome. Antimicrob Agents Chemother 56: 603–612 [CrossRef] [PubMed] [Google Scholar]
  • Mendes RE, Flamm RK, Hogan PA, Ross JE, Jones RN, (2014) Summary of linezolid activity and resistance mechanisms detected during the 2012 LEADER surveillance program for the United States. Antimicrob Agents Chemother 58: 1243–1247 [CrossRef] [PubMed] [Google Scholar]
  • Lodise TP, Drusano GL, (2014) Use of pharmacokinetic/pharmacodynamic systems analyses to inform dose selection of tedizolid phosphate. Clin Infect Dis 58: S28–S34 [CrossRef] [PubMed] [Google Scholar]
  • Flanagan S, Prokocimer P, (2016) Reduction in tedizolid plasma exposure among end-stage renal disease patients undergoing dialysis is explained by variations in ideal body weight. Antimicrob Agents Chemother 60: 3246–3247 [CrossRef] [PubMed] [Google Scholar]
  • Flanagan S, Minassian SL, Morris D, Ponnuraj R, Marbury TC, Alcorn HW, Fang E, Prokocimer P, (2014) Pharmacokinetics of tedizolid in subjects with renal or hepatic impairment. Antimicrob Agents Chemother 58: 6471–6476 [CrossRef] [PubMed] [Google Scholar]
  • Taubert M, Zoller M, Maier B, Frechen S, Scharf C, Holdt LM, Frey L, Vogeser M, Fuhr U, Zander J, (2016) Predictors of inadequate linezolid concentrations after standard dosing in critically ill patients. Antimicrob Agents Chemother 60: 5254–5261 [CrossRef] [PubMed] [Google Scholar]
  • Zoller M, Maier B, Hornuss C, Neugebauer C, Dobbeler G, Nagel D, Holdt LM, Bruegel M, Weig T, Grabein B, Frey L, Teupser D, Vogeser M, Zander J, (2014) Variability of linezolid concentrations after standard dosing in critically ill patients: a prospective observational study. Crit Care 18: R148 [CrossRef] [PubMed] [Google Scholar]
  • Payen D, de Pont AC, Sakr Y, Spies C, Reinhart K, Vincent JL, Sepsis Occurrence in Acutely Ill Patients I, (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12: R74 [CrossRef] [PubMed] [Google Scholar]
  • Kanafani ZA, Corey GR, (2009) Ceftaroline: a cephalosporin with expanded Gram-positive activity. Future Microbiol 4: 25–33 [CrossRef] [PubMed] [Google Scholar]
  • Zhanel GG, Lam A, Schweizer F, Thomson K, Walkty A, Rubinstein E, Gin AS, Hoban DJ, Noreddin AM, Karlowsky JA, (2008) Ceftobiprole: a review of a broad-spectrum and anti-MRSA cephalosporin. Am J Clin Dermatol 9: 245–254 [PubMed] [Google Scholar]
  • Biedenbach DJ, Iaconis JP, Sahm DF, (2016) Comparative in vitro activities of ceftaroline and ceftriaxone against bacterial pathogens associated with respiratory tract infections: results from the AWARE surveillance study. J Antimicrob Chemother 71: 3459–3464 [PubMed] [Google Scholar]
  • Pfaller MA, Mendes RE, Castanheira M, Flamm RK, Jones RN, Sader HS, (2016) Ceftaroline activity tested against bacterial isolates causing community-acquired respiratory tract infections and skin and skin structure infections in pediatric patients from United States hospitals: 2012–2014. Pediatr Infect Dis J [in press] [Google Scholar]
  • Hodille E, Delouere L, Bouveyron C, Meugnier H, Bes M, Tristan A, Laurent F, Vandenesch F, Lina G, Dumitrescu O, (2016) In vitro activity of ceftobiprole on 440 Staphylococcus aureus strains isolated from bronchopulmonary infections. Med Mal Infect 47: 152–157 [PubMed] [Google Scholar]
  • Sader HS, Farrell DJ, Flamm RK, Streit JM, Mendes RE, Jones RN, (2016) Antimicrobial activity of ceftaroline and comparator agents when tested against numerous species of coagulase-negative Staphylococcus causing infection in US hospitals. Diagn Microbiol Infect Dis 85: 80–84 [Google Scholar]
  • Rossolini GM, Dryden MS, Kozlov RS, Quintana A, Flamm RK, Lauffer JM, Lee E, Morrissey I, Group CS, (2011) Comparative activity of ceftobiprole against Gram-positive and Gram-negative isolates from Europe and the Middle East: the CLASS study. J Antimicrob Chemother 66: 151–159 [PubMed] [Google Scholar]
  • Karlowsky JA, Biedenbach DJ, Bouchillon SK, Hackel M, Iaconis JP, Sahm DF, (2016) In vitro activity of ceftaroline against bacterial pathogens isolated from patients with skin and soft tissue and respiratory tract infections in African and Middle Eastern countries: AWARE global surveillance Program 2012–2014. Diagn Microbiol Infect Dis 86: 194–199 [Google Scholar]
  • Lascols C, Legrand P, Merens A, Leclercq R, Muller-Serieys C, Drugeon HB, Kitzis MD, Reverdy ME, Roussel-Delvallez M, Moubareck C, Bremont S, Miara A, Gjoklaj M, Soussy CJ, (2011) In vitro antibacterial activity of ceftobiprole against clinical isolates from French teaching hospitals: proposition of zone diameter breakpoints. Int J Antimicrob Agents 37: 235–239 [CrossRef] [PubMed] [Google Scholar]
  • Lahiri SD, Alm RA, (2016) Potential of Staphylococcus aureus isolates carrying different PBP2a alleles to develop resistance to ceftaroline. J Antimicrob Chemother 71: 34–40 [PubMed] [Google Scholar]
  • Boselli E, Breilh D, Rimmele T, Poupelin JC, Saux MC, Chassard D, Allaouchiche B, (2004) Plasma and lung concentrations of ceftazidime administered in continuous infusion to critically ill patients with severe nosocomial pneumonia. Intensive Care Med 30: 989–991 [CrossRef] [PubMed] [Google Scholar]
  • Riccobene TA, Pushkin R, Jandourek A, Knebel W, Khariton T, (2016) Penetration of ceftaroline into the epithelial lining fluid of healthy adult subjects. Antimicrob Agents Chemother 60: 5849–5857 [CrossRef] [PubMed] [Google Scholar]
  • Matzneller P, Lackner E, Lagler H, Wulkersdorfer B, Osterreicher Z, Zeitlinger M, (2016) Single- and repeated-dose pharmacokinetics of ceftaroline in plasma and soft tissues of healthy volunteers for two different dosing regimens of ceftaroline–fosamil. Antimicrob Agents Chemother 60: 3617–3625 [CrossRef] [PubMed] [Google Scholar]
  • Croisier-Bertin D, Piroth L, Charles PE, Larribeau A, Biek D, Ge Y, Chavanet P, (2011) Ceftaroline versus ceftriaxone in a highly penicillin-resistant pneumococcal pneumonia rabbit model using simulated human dosing. Antimicrob Agents Chemother 55: 3557–3563 [CrossRef] [PubMed] [Google Scholar]
  • Laohavaleeson S, Tessier PR, Nicolau DP, (2008) Pharmacodynamic characterization of ceftobiprole in experimental pneumonia caused by phenotypically diverse Staphylococcus aureus strains. Antimicrob Agents Chemother 52: 2389–2394 [CrossRef] [PubMed] [Google Scholar]
  • Bhalodi AA, Crandon JL, Biek D, Nicolau DP, (2012) Efficacy of ceftaroline–fosamil in a staphylococcal murine pneumonia model. Antimicrob Agents Chemother 56: 6160–6165 [CrossRef] [PubMed] [Google Scholar]
  • Rouse MS, Hein MM, Anguita-Alonso P, Steckelberg JM, Patel R, (2006) Ceftobiprole medocaril (BAL5788) treatment of experimental Haemophilus influenzae, Enterobacter cloacae, and Klebsiella pneumoniae murine pneumonia. Diagn Microbiol Infect Dis 55: 333–336 [Google Scholar]
  • Keel RA, Crandon JL, Nicolau DP, (2011) Efficacy of human simulated exposures of ceftaroline administered at 600 milligrams every 12 hours against phenotypically diverse Staphylococcus aureus isolates. Antimicrob Agents Chemother 55: 4028–4032 [CrossRef] [PubMed] [Google Scholar]
  • Housman ST, Keel RA, Crandon JL, Williams G, Nicolau DP, (2012) Efficacy of human simulated exposures of ceftaroline against phenotypically diverse Enterobacteriaceae isolates. Antimicrob Agents Chemother 56: 2576–2580 [CrossRef] [PubMed] [Google Scholar]
  • Fernandez J, Hilliard JJ, Abbanat D, Zhang W, Melton JL, Santoro CM, Flamm RK, Bush K, (2010) In vivo activity of ceftobiprole in murine skin infections due to Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrob Agents Chemother 54: 116–125 [CrossRef] [PubMed] [Google Scholar]
  • Craig WA, Andes DR, (2008) In vivo pharmacodynamics of ceftobiprole against multiple bacterial pathogens in murine thigh and lung infection models. Antimicrob Agents Chemother 52: 3492–3496 [CrossRef] [PubMed] [Google Scholar]
  • Van Wart SA, Ambrose PG, Rubino CM, Khariton T, Riccobene TA, Friedland HD, Critchley IA, Bhavnani SM, (2014) Pharmacokinetic–pharmacodynamic target attainment analyses to evaluate in vitro susceptibility test interpretive criteria for ceftaroline against Staphylococcus aureus and Streptococcus pneumoniae. Antimicrob Agents Chemother 58: 885–891 [CrossRef] [PubMed] [Google Scholar]
  • Jacqueline C, Amador G, Batard E, Le Mabecque V, Miegeville AF, Biek D, Caillon J, Potel G, (2011) Comparison of ceftaroline–fosamil, daptomycin and tigecycline in an experimental rabbit endocarditis model caused by methicillin-susceptible, methicillin-resistant and glycopeptide-intermediate Staphylococcus aureus. J Antimicrob Chemother 66: 863–866 [PubMed] [Google Scholar]
  • Jacqueline C, Caillon J, Le Mabecque V, Miegeville AF, Ge Y, Biek D, Batard E, Potel G, (2009) In vivo activity of a novel anti-methicillin-resistant Staphylococcus aureus cephalosporin, ceftaroline, against vancomycin-susceptible and -resistant Enterococcus faecalis strains in a rabbit endocarditis model: a comparative study with linezolid and vancomycin. Antimicrob Agents Chemother 53: 5300–5302 [CrossRef] [PubMed] [Google Scholar]
  • Jacqueline C, Caillon J, Le Mabecque V, Miegeville AF, Hamel A, Bugnon D, Ge JY, Potel G, (2007) In vivo efficacy of ceftaroline (PPI-0903), a new broad-spectrum cephalosporin, compared with linezolid and vancomycin against methicillin-resistant and vancomycin-intermediate Staphylococcus aureus in a rabbit endocarditis model. Antimicrob Agents Chemother 51: 3397–3400 [CrossRef] [PubMed] [Google Scholar]
  • Tattevin P, Basuino L, Bauer D, Diep BA, Chambers HF, (2010) Ceftobiprole is superior to vancomycin, daptomycin, and linezolid for treatment of experimental endocarditis in rabbits caused by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 54: 610–613 [CrossRef] [PubMed] [Google Scholar]
  • Stucki A, Cottagnoud M, Acosta F, Egerman U, Lauffer J, Cottagnoud P, (2012) Evaluation of ceftobiprole activity against a variety of Gram-negative pathogens, including Escherichia coli, Haemophilus influenzae (beta-lactamase positive and beta-lactamase negative), and Klebsiella pneumoniae, in a rabbit meningitis model. Antimicrob Agents Chemother 56: 921–925 [CrossRef] [PubMed] [Google Scholar]
  • Meeker DG, Beenken KE, Mills WB, Loughran AJ, Spencer HJ, Lynn WB, Smeltzer MS, (2016) Evaluation of antibiotics active against methicillin-resistant Staphylococcus aureus based on activity in an established biofilm. Antimicrob Agents Chemother 60: 5688–5694 [CrossRef] [PubMed] [Google Scholar]
  • So W, Crandon JL, Zhanel GG, Nicolau DP, (2014) Comparison of in vivo and in vitro pharmacodynamics of a humanized regimen of 600 milligrams of ceftaroline–fosamil every 12 hours against Staphylococcus aureus at initial inocula of 106 and 108 CFU per milliliter. Antimicrob Agents Chemother 58: 6931–6933 [CrossRef] [PubMed] [Google Scholar]
  • Wilcox MH, Corey GR, Talbot GH, Thye D, Friedland D, Baculik T, CANVAS 2 investigators, (2010) CANVAS 2: the second phase 3, randomized, double-blind study evaluating ceftaroline–fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother 65: iv53–iv65 [PubMed] [Google Scholar]
  • Corey GR, Wilcox MH, Talbot GH, Thye D, Friedland D, Baculik T, CANVAS 1 investigators, (2010) CANVAS 1: the first phase 3, randomized, double-blind study evaluating ceftaroline–fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother 65: iv41–iv51 [PubMed] [Google Scholar]
  • Friedland HD, O'Neal T, Biek D, Eckburg PB, Rank DR, Llorens L, Smith A, Witherell GW, Laudano JB, Thye D, (2012) CANVAS 1 and 2: analysis of clinical response at day 3 in two phase 3 trials of ceftaroline–fosamil versus vancomycin plus aztreonam in treatment of acute bacterial skin and skin structure infections. Antimicrob Agents Chemother 56: 2231–2236 [CrossRef] [PubMed] [Google Scholar]
  • Dryden M, Zhang Y, Wilson D, Iaconis JP, Gonzalez J, (2016) A phase 3, randomized, controlled, non-inferiority trial of ceftaroline–fosamil 600 mg every 8 hours versus vancomycin plus aztreonam in patients with complicated skin and soft tissue infection with systemic inflammatory response or underlying comorbidities. J Antimicrob Chemother 71: 3575–3584 [PubMed] [Google Scholar]
  • Low DE, File TMJr, Eckburg PB, Talbot GH, David Friedland H, Lee J, Llorens L, Critchley IA, Thye DA, FOCUS 2 investigators, (2011) FOCUS 2: a randomized, double-blinded, multicentre, phase 3 trial of the efficacy and safety of ceftaroline–fosamil versus ceftriaxone in community-acquired pneumonia. J Antimicrob Chemother 66: iii33–44 [PubMed] [Google Scholar]
  • File TMJr., Low DE, Eckburg PB, Talbot GH, Friedland HD, Lee J, Llorens L, Critchley I, Thye D, (2010) Integrated analysis of FOCUS 1 and FOCUS 2: randomized, doubled-blinded, multicenter phase 3 trials of the efficacy and safety of ceftaroline–fosamil versus ceftriaxone in patients with community-acquired pneumonia. Clin Infect Dis 51: 1395–1405 [CrossRef] [PubMed] [Google Scholar]
  • Zhong NS, Sun T, Zhuo C, D'Souza G, Lee SH, Lan NH, Chiang CH, Wilson D, Sun F, Iaconis J, Melnick D, (2015) Ceftaroline fosamil versus ceftriaxone for the treatment of Asian patients with community-acquired pneumonia: a randomised, controlled, double-blind, phase 3, non-inferiority with nested superiority trial. Lancet Infect Dis 15: 161–171 [CrossRef] [PubMed] [Google Scholar]
  • Lodise TP, Anzueto AR, Weber DJ, Shorr AF, Yang M, Smith A, Zhao Q, Huang X, File TM, (2015) Assessment of time to clinical response, a proxy for discharge readiness, among hospitalized patients with community-acquired pneumonia who received either ceftaroline–fosamil or ceftriaxone in two phase 3 FOCUS trials. Antimicrob Agents Chemother 59: 1119–1126 [CrossRef] [PubMed] [Google Scholar]
  • Awad SS, Rodriguez AH, Chuang YC, Marjanek Z, Pareigis AJ, Reis G, Scheeren TW, Sanchez AS, Zhou X, Saulay M, Engelhardt M, (2014) A phase 3 randomized double-blind comparison of ceftobiprole medocaril versus ceftazidime plus linezolid for the treatment of hospital-acquired pneumonia. Clin Infect Dis 59: 51–61 [CrossRef] [PubMed] [Google Scholar]
  • Muller AE, Punt N, Mouton JW, (2014) Exposure to ceftobiprole is associated with microbiological eradication and clinical cure in patients with nosocomial pneumonia. Antimicrob Agents Chemother 58: 2512–2519 [CrossRef] [PubMed] [Google Scholar]
  • Zasowski EJ, Trinh TD, Claeys KC, Casapao AM, Sabagha N, Lagnf AM, Klinker KP, Davis SL, Rybak MJ, (2017) A multicenter observational study of ceftaroline–fosamil for methicillin-resistant Staphylococcus aureus bloodstream infections. Antimicrob Agents Chemother [in press] [Google Scholar]
  • Corrado ML, (2010) Integrated safety summary of CANVAS 1 and 2 trials: phase 3, randomized, double-blind studies evaluating ceftaroline–fosamil for the treatment of patients with complicated skin and skin structure infections. J Antimicrob Chemother 65: iv67–iv71 [PubMed] [Google Scholar]
  • Furtek KJ, Kubiak DW, Barra M, Varughese CA, Ashbaugh CD, Koo S, (2016) High incidence of neutropenia in patients with prolonged ceftaroline exposure. J Antimicrob Chemother 71: 2010–2013 [PubMed] [Google Scholar]
  • Georges B, Conil JM, Seguin T, Ruiz S, Minville V, Cougot P, Decun JF, Gonzalez H, Houin G, Fourcade O, Saivin S, (2009) Population pharmacokinetics of ceftazidime in intensive care unit patients: influence of glomerular filtration rate, mechanical ventilation, and reason for admission. Antimicrob Agents Chemother 53: 4483–4489 [CrossRef] [PubMed] [Google Scholar]
  • Tattevin P, Boutoille D, Vitrat V, Van Grunderbeeck N, Revest M, Dupont M, Alfandari S, Stahl JP, (2014) Salvage treatment of methicillin-resistant staphylococcal endocarditis with ceftaroline: a multicentre observational study. J Antimicrob Chemother 69: 2010–2013 [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.