Accès gratuit
Numéro
Méd. Intensive Réa.
Volume 26, Numéro 2, Mars 2017
Cardiovasculaire
Page(s) 134 - 144
Section Mise au point / Update
DOI https://doi.org/10.1007/s13546-017-1262-3
Publié en ligne 10 février 2017
  • Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A, (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 40: 1795–1815 [CrossRef] [PubMed] [Google Scholar]
  • Morris CG, Low J, (2008) Metabolic acidosis in the critically ill: part 1. Classification and pathophysiology. Anaesthesia 63: 294–301 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kraut JA, Kurtz I, (2006) Use of base in the treatment of acute severe organic acidosis by nephrologists and critical care physicians: results of an online survey. Clin Exp Nephrol 10: 111–117 [CrossRef] [PubMed] [Google Scholar]
  • Noritomi DT, Soriano FG, Kellum JA, Cappi SB, Biselli PJ, Liborio AB, Park M, (2009) Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study. Crit Care Med 37: 2733–2739 [CrossRef] [PubMed] [Google Scholar]
  • Berger DS, Fellner SK, Robinson KA, Vlasica K, Godoy IE, Shroff SG, (1999) Disparate effects of three types of extracellular acidosis on left ventricular function. Am J Physiol 276: H582–H594 [PubMed] [Google Scholar]
  • Otter D, Austin C, (2000) Simultaneous monitoring of vascular contractility, intracellular pH and intracellular calcium in isolated rat mesenteric arteries; effects of weak bases. Exp Physiol 85: 349–351 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R, (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41: 580–637 [CrossRef] [PubMed] [Google Scholar]
  • Jung B, Rimmele T, Le Goff C, Chanques G, Corne P, Jonquet O, Muller L, Lefrant J-Y, Guervilly C, Papazian L, Allaouchiche B, Jaber S, Group A, (2011) Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit Care 15: R238 [CrossRef] [PubMed] [Google Scholar]
  • Kimmoun A, Novy E, Auchet T, Ducrocq N, Levy B, (2015) Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care 19: 175 [CrossRef] [PubMed] [Google Scholar]
  • Doenyas-Barak K, Beberashvili I, Marcus R, Efrati S, (2016) Lactic acidosis and severe septic shock in metformin users: a cohort study. Crit Care 20: 10 [CrossRef] [PubMed] [Google Scholar]
  • Barbee RW, Reynolds PS, Ward KR, (2010) Assessing shock resuscitation strategies by oxygen debt repayment. Shock 33: 113–122 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Levy B, (2006) Lactate and shock state: the metabolic view. Curr Opin Crit Care 12: 315–321 [CrossRef] [PubMed] [Google Scholar]
  • Suetrong B, Walley KR, (2016) Lactic acidosis in sepsis: it's not all anaerobic: implications for diagnosis and management. Chest 149: 252–261 [CrossRef] [PubMed] [Google Scholar]
  • Richter EA, Kiens B, Saltin B, Christensen NJ, Savard G, (1988) Skeletal muscle glucose uptake during dynamic exercise in humans: role of muscle mass. Am J Physiol 254: E555–E561 [PubMed] [Google Scholar]
  • Levraut J, Ciebiera JP, Chave S, Rabary O, Jambou P, Carles M, Grimaud D, (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 157: 1021–1026 [CrossRef] [PubMed] [Google Scholar]
  • Garcia-Alvarez M, Marik P, Bellomo R, (2014) Stress hyperlactataemia: present understanding and controversy. Lancet Diabetes Endocrinol 2: 339–347 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Bröer S, Schneider HP, Bröer A, Rahman B, Hamprecht B, Deitmer JW, (1998) Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J 333: 167–174 [CrossRef] [PubMed] [Google Scholar]
  • Kraut JA, Madias NE, (2015) Lactic acidosis. N Engl J Med 372: 1078–1079 [PubMed] [Google Scholar]
  • Regueira T, Djafarzadeh S, Brandt S, Gorrasi J, Borotto E, Porta F, Takala J, Bracht H, Shaw S, Lepper PM, Jakob SM, (2012) Oxygen transport and mitochondrial function in porcine septic shock, cardiogenic shock, and hypoxaemia. Acta Anaesthesiol Scand 56: 846–859 [CrossRef] [PubMed] [Google Scholar]
  • Crampin EJ, Smith NP, Langham AE, Clayton RH, Orchard CH, (2006) Acidosis in models of cardiac ventricular myocytes. Philos Trans A Math Phys Eng Sci 364: 1171–1186 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Choi HS, Trafford AW, Orchard CH, Eisner DA, (2000) The effect of acidosis on systolic Ca2+ and sarcoplasmic reticulum calcium content in isolated rat ventricular myocytes. J Physiol 529: 661–668 [CrossRef] [PubMed] [Google Scholar]
  • Sikes PJ, Zhao P, Maass DL, White J, Horton JW, (2005) Sodium/hydrogen exchange activity in sepsis and in sepsis complicated by previous injury: 31P and 23Na NMR study. Crit Care Med 33: 605–615 [CrossRef] [PubMed] [Google Scholar]
  • Wu LL, Tang C, Dong LW, Liu MS, (2002) Altered phospholamban-calcium ATPase interaction in cardiac sarcoplasmic reticulum during the progression of sepsis. Shock 17: 389–393 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Wu D, Kraut JA, (2011) Potential role of NHE1 (sodium-hydrogen exchanger 1) in the cellular dysfunction of lactic acidosis: implications for treatment. Am J Kidney Dis 57: 781–787 [CrossRef] [PubMed] [Google Scholar]
  • Kapur S, Wasserstrom JA, Kelly JE, Kadish AH, Aistrup GL, (2009) Acidosis and ischemia increase cellular Ca2+ transient alternans and repolarization alternans susceptibility in the intact rat heart. Am J Physiol Heart Circ Physiol 296: H1491–H1512 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Ming MJ, Hu D, Chen HS, Liu LM, Nan X, Hua CH, Lu RQ, (2000) Effect of MCI-154, a calcium sensitizer, on calcium sensitivity of myocardial fibers in endotoxic shock rats. Shock 14: 652–656 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Schotola H, Toischer K, Popov AF, Renner A, Schmitto JD, Gummert J, Quintel M, Bauer M, Maier LS, Sossalla S, (2012) Mild metabolic acidosis impairs the β-adrenergic response in isolated human failing myocardium. Crit Care 16: R153 [CrossRef] [PubMed] [Google Scholar]
  • Graham RM, Frazier DP, Thompson JW, Haliko S, Li H, Wasserlauf BJ, Spiga MG, Bishopric NH, Webster KA, (2004) A unique pathway of cardiac myocyte death caused by hypoxia-acidosis. J Exp Biol 207: 3189–3200 [CrossRef] [PubMed] [Google Scholar]
  • Kubasiak LA, Hernandez OM, Bishopric NH, Webster KA, (2002) Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3. Proc Natl Acad Sci U S A 99: 12825–12830 [CrossRef] [PubMed] [Google Scholar]
  • Kumar S, Kasseckert S, Kostin S, Abdallah Y, Schafer C, Kaminski A, Reusch HP, Piper HM, Steinhoff G, Ladilov Y, (2007) Ischemic acidosis causes apoptosis in coronary endothelial cells through activation of caspase-12. Cardiovasc Res 73: 172–180 [CrossRef] [PubMed] [Google Scholar]
  • Marsh JD, Margolis TI, Kim D, (1988) Mechanism of diminished contractile response to catecholamines during acidosis. Am J Physiol 254: H20–H27 [PubMed] [Google Scholar]
  • Ives SJ, Andtbacka RHI, Noyes RD, Morgan RG, Gifford JR, Park SY, Symons JD, Richardson RS, (2013) α1-adrenergic responsiveness in human skeletal muscle feed arteries: the impact of reducing extracellular pH. Exp Physiol 98: 256–267 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kuo JH, Chen SJ, Shih CC, Lue WM, Wu CC, (2009) Abnormal activation of potassium channels in aortic smooth muscle of rats with peritonitis-induced septic shock. Shock 32: 74–79 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Fernandes D, Assreuy J, (2008) Nitric oxide and vascular reactivity in sepsis. Shock 30: 10–13 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Aalkjaer C, Peng HL, (1997) pH and smooth muscle. Acta Physiol Scand 161: 557–566 [CrossRef] [PubMed] [Google Scholar]
  • Boedtkjer E, Praetorius J, Aalkjaer C, (2006) NBCn1 (slc4a7) mediates the Na+-dependent bicarbonate transport important for regulation of intracellular pH in mouse vascular smooth muscle cells. Circ Res 98: 515–523 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Little PJ, Neylon CB, Farrelly CA, Weissberg PL, Cragoe EJ, Bobik A, (1995) Intracellular pH in vascular smooth muscle: regulation by sodium-hydrogen exchange and multiple sodium dependent HCO3– mechanisms. Cardiovasc Res 29: 239–246 [PubMed] [Google Scholar]
  • Weil MH, Houle DB, Brown EB, Campbell GS, Heath C, (1958) Vasopressor agents; influence of acidosis on cardiac and vascular responsiveness. Calif Med 88: 437–440 [PubMed] [Google Scholar]
  • Kimmoun A, Ducrocq N, Sennoun N, Issa K, Strub C, Escanyé JM, Leclerc S, Levy B, (2014) Efficient extra- and intracellular alkalinization improves cardiovascular functions in severe lactic acidosis induced by hemorrhagic shock. Anesthesiology 120: 926–934 [CrossRef] [PubMed] [Google Scholar]
  • Hagiya K, Takahashi H, Isaka Y, Inomata S, Tanaka M, (2013) Influence of acidosis on cardiotonic effects of colforsin and epinephrine: a dose-response study. J Cardiothorac Vasc Anesth 27: 925–932 [CrossRef] [PubMed] [Google Scholar]
  • McCaul CL, McNamara P, Engelberts D, Slorach C, Hornberger LK, Kavanagh BP, (2006) The effect of global hypoxia on myocardial function after successful cardiopulmonary resuscitation in a laboratory model. Resuscitation 68: 267–275 [CrossRef] [PubMed] [Google Scholar]
  • Toller W, Wolkart G, Stranz C, Metzler H, Brunner F, (2005) Contractile action of levosimendan and epinephrine during acidosis. Eur J Pharmacol 507: 199–209 [CrossRef] [PubMed] [Google Scholar]
  • McCaul CL, McNamara P, Engelberts D, Slorach C, Hornberger LK, Kavanagh BP, (2006) The effect of global hypoxia on myocardial function after successful cardiopulmonary resuscitation in a laboratory model. Resuscitation 68: 267–275 [CrossRef] [PubMed] [Google Scholar]
  • Toller W, Wölkart G, Stranz C, Metzler H, Brunner F, (2005) Contractile action of levosimendan and epinephrine during acidosis. Eur J Pharmacol 507: 199–209 [CrossRef] [PubMed] [Google Scholar]
  • Rosenbaum DS, Jackson LE, Smith JM, Garan H, Ruskin JN, Cohen RJ, (1994) Electrical alternans and vulnerability to ventricular arrhythmias. N Engl J Med 330: 235–241 [CrossRef] [PubMed] [Google Scholar]
  • Gardner JP, Diecke FP, (1988) Influence of pH on isometric force development and relaxation in skinned vascular smooth muscle. Pflügers Arch 412: 231–239 [CrossRef] [Google Scholar]
  • Mitchell JH, Wildenthal K, Johnson RL, (1972) The effects of acid-base disturbances on cardiovascular and pulmonary function. Kidney Int 1: 375–389 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Fujita M, Asanuma H, Hirata A, Wakeno M, Takahama H, Sasaki H, Kim J, Takashima S, Tsukamoto O, Minamino T, Shinozaki Y, Tomoike H, Hori M, Kitakaze M, (2007) Prolonged transient acidosis during early reperfusion contributes to the cardioprotective effects of postconditioning. Am J Physiol Heart Circ Physiol 292: H2004–H2008 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Steenbergen C, Deleeuw G, Rich T, Williamson JR, (1977) Effects of acidosis and ischemia on contractility and intracellular pH of rat heart. Circ Res 41: 849–858 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Gabig TG, Bearman SI, Babior BM, (1979) Effects of oxygen tension and pH on the respiratory burst of human neutrophils. Blood 53: 1133–1139 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Kin H, Zatta AJ, Lofye MT, Amerson BS, Halkos ME, Kerendi F, Zhao Z-Q, Guyton RA, Headrick JP, Vinten-Johansen J, (2005) Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 67: 124–133 [CrossRef] [PubMed] [Google Scholar]
  • Yang XM, Proctor JB, Cui L, Krieg T, Downey JM, Cohen MV, (2004) Multiple, brief coronary occlusions during early reperfusion protect rabbit hearts by targeting cell signaling pathways. J Am Coll Cardiol 44: 1103–1110 [CrossRef] [PubMed] [Google Scholar]
  • Velissaris D, Karamouzos V, Ktenopoulos N, Pierrakos C, Karanikolas M, (2015) The use of sodium bicarbonate in the treatment of acidosis in sepsis: a literature update on a long term debate. Crit Care Res Pract 2015: 605830 [PubMed] [Google Scholar]
  • Siegel G, Emden J, Wenzel K, Mironneau J, Stock G, (1992) Potassium channel activation in vascular smooth muscle. Adv Exp Med Biol 311: 53–72 [CrossRef] [PubMed] [Google Scholar]
  • Jennings RB, Reimer KA, Steenbergen C, Schaper J, (1989) Total ischemia III: effect of inhibition of anaerobic glycolysis. J Mol Cell Cardiol 21: 37–54 [CrossRef] [PubMed] [Google Scholar]
  • Wilson RF, Spencer AR, Tyburski JG, Dolman H, Zimmerman LH, (2013) Bicarbonate therapy in severely acidotic trauma patients increases mortality. J Trauma Acute Care Surg 74: 45–50; discussion 50 [CrossRef] [PubMed] [Google Scholar]
  • Rhee KH, Toro LO, McDonald GG, Nunnally RL, Levin DL, (1993) Carbicarb, sodium bicarbonate, and sodium chloride in hypoxic lactic acidosis. Effect on arterial blood gases, lactate concentrations, hemodynamic variables, and myocardial intracellular pH. Chest 104: 913–918 [CrossRef] [PubMed] [Google Scholar]
  • Valenza F, Pizzocri M, Salice V, Chevallard G, Fossali T, Coppola S, Froio S, Polli F, Gatti S, Fortunato F, Comi GP, Gattinoni L, (2012) Sodium bicarbonate treatment during transient or sustained lactic acidemia in normoxic and normotensive rats. PloS One 7: e46035 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Boyd JH, Walley KR, (2008) Is there a role for sodium bicarbonate in treating lactic acidosis from shock? Curr Opin Crit Care 14: 379–383 [CrossRef] [PubMed] [Google Scholar]
  • Mathieu D, Neviere R, Billard V, Fleyfel M, Wattel F, (1991) Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med 19: 1352–1356 [CrossRef] [PubMed] [Google Scholar]
  • Moon PF, Gabor L, Gleed RD, Erb HN, (1997) Acid-base, metabolic, and hemodynamic effects of sodium bicarbonate or tromethamine administration in anesthetized dogs with experimentally induced metabolic acidosis. Am J Vet Res 58: 771–776 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Sirieix D, Delayance S, Paris M, Massonnet-Castel S, Carpentier A, Baron JF, (1997) Tris-hydroxymethyl aminomethane and sodium bicarbonate to buffer metabolic acidosis in an isolated heart model. Am J Respir Crit Care Med 155: 957–963 [CrossRef] [PubMed] [Google Scholar]
  • Hoste EA, Colpaert K, Vanholder RC, Lameire NH, De Waele JJ, Blot SI, Colardyn FA, (2005) Sodium bicarbonate versus THAM in ICU patients with mild metabolic acidosis. J Nephrol 18: 303–307 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • Adrogué HJ, Madias NE, (1998) Management of life-threatening acid-base disorders. First of two parts. N Engl J Med 338: 26–34 [CrossRef] [PubMed] [Google Scholar]
  • Bersin RM, Arieff AI, (1988) Improved hemodynamic function during hypoxia with carbicarb, a new agent for the management of acidosis. Circulation 77: 227–233 [CrossRef] [PubMed] [Google Scholar]
  • Allegretti AS, Flythe JE, Benda V, Robinson ES, Charytan DM, (2015) The effect of bicarbonate administration via continuous venovenous hemofiltration on acid-base parameters in ventilated patients. Biomed Res Int 2015: 901590 [CrossRef] [PubMed] [Google Scholar]
  • Uchino S, Bellomo R, Ronco C, (2001) Intermittent versus continuous renal replacement therapy in the ICU: impact on electrolyte and acid-base balance. Intensive Care Med 27: 1037–1043 [CrossRef] [PubMed] [Google Scholar]
  • Naka T, Bellomo R, (2004) Bench-to-bedside review: treating acid-base abnormalities in the intensive care unit — the role of renal replacement therapy. Crit Care 8: 108–114 [CrossRef] [PubMed] [Google Scholar]
  • Bellomo R, Lipcsey M, Calzavacca P, Haase M, Haase-Fielitz A, Licari E, Tee A, Cole L, Cass A, Finfer S, Gallagher M, Lee J, Lo S, McArthur C, McGuinness S, Myburgh J, Scheinkestel C; Group RSIaACT, (2013) Early acid-base and blood pressure effects of continuous renal replacement therapy intensity in patients with metabolic acidosis. Intensive Care Med 39: 429–436 [CrossRef] [PubMed] [Google Scholar]
  • Lin X, More AS, Kraut JA, Wu D, (2015) Interaction of sodium bicarbonate and Na+/H+ exchanger inhibition in the treatment of acute metabolic acidosis in pigs. Crit Care Med 43: e160–169 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.