Accès gratuit
Méd. Intensive Réa.
Volume 25, Numéro 6, Novembre 2016
Néphrologie et métabolisme
Page(s) 557 - 569
Section Mise au point / Update
Publié en ligne 4 octobre 2016
  • Vanholder R, Sever MS, Erek E, Lameire N (2000) Rhabdomyolysis. J Am Soc Nephrol 11:1553–61 [PubMed] [Google Scholar]
  • Bywaters EG, Beall D (1941) Crush injuries with impairment of renal function. Br Med J 1:427–32 [CrossRef] [PubMed] [Google Scholar]
  • Bywaters EG, Delory GE, Rimington C, Smiles J (1941) Myohaemoglobin in the urine of air raid casualties with crushing injury. Biochem J 35:1164–8 [CrossRef] [PubMed] [Google Scholar]
  • Ponraj D, Gopalakrishnakone P (1995) Morphological changes induced by a generalized myotoxin (myoglobinuria-inducing toxin) from the venom of Pseudechis australis (king brown snake) in skeletal muscle and kidney of mice. Toxicon 33:1453–67 [CrossRef] [PubMed] [Google Scholar]
  • Bedry R, Baudrimont I, Deffieux G, et al (2001) Wild-mushroom intoxication as a cause of rhabdomyolysis. N Engl J Med 345:798–802 [CrossRef] [PubMed] [Google Scholar]
  • Krajčová A, Waldauf P, Anděl M, Duška F (2015) Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care 19:398 [CrossRef] [PubMed] [Google Scholar]
  • Scalco RS, Gardiner AR, Pitceathly RD, et al (2015) Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 10:51 [CrossRef] [PubMed] [Google Scholar]
  • McMahon GM, Zeng X, Waikar SS (2013) A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern Med 173:1821–8 [CrossRef] [PubMed] [Google Scholar]
  • Melli G, Chaudhry V, Cornblath DR (2005) Rhabdomyolysis: an evaluation of 475 hospitalized patients. Medicine (Baltimore) 84:377–85 [CrossRef] [PubMed] [Google Scholar]
  • Holt SG, Moore KP (2001) Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med 27:803–11 [CrossRef] [PubMed] [Google Scholar]
  • Bosch X, Poch E, Grau JM (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 361:62–72 [CrossRef] [PubMed] [Google Scholar]
  • Rodríguez E, Soler MJ, Rap O, Barrios C, Orfila MA, Pascual J (2013) Risk factors for acute kidney injury in severe rhabdomyolysis. PLoS One 8:82992 [CrossRef] [Google Scholar]
  • Wang J, Wang D, Li Y, et al (2013) Rhabdomyolysis-induced acute kidney injury under hypoxia and deprivation of food and water. Kidney Blood Press Res 37:414–21 [CrossRef] [PubMed] [Google Scholar]
  • Chedru MF, Baethke R, Oken DE (1972) Renal cortical blood flow and glomerular filtration in myohemoglobinuric acute renal failure. Kidney Int 1:232–9 [CrossRef] [PubMed] [Google Scholar]
  • Wrogemann K, Pena SD (1976) Mitochondrial calcium overload: a general mechanism for cell-necrosis in muscle diseases. Lancet 1:672–4 [CrossRef] [PubMed] [Google Scholar]
  • Lathem W (1960) The binding of myoglobin by plasma protein. J Exp Med 111:65–75 [CrossRef] [PubMed] [Google Scholar]
  • Ordway GA, Garry DJ (2004) Myoglobin: an essential hemoprotein in striated muscle. J Exp Biol 207:3441–6 [CrossRef] [PubMed] [Google Scholar]
  • Zager RA, Burkhart K (1997) Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca2+, H2O2, and terminal mitochondrial electron transport. Kidney Int 51:728–38 [CrossRef] [PubMed] [Google Scholar]
  • Zager RA, Burkhart KM, Conrad DS, Gmur DJ (1995) Iron, heme oxygenase, and glutathione: effects on myohemoglobinuric proximal tubular injury. Kidney Int 48:1624–34 [CrossRef] [PubMed] [Google Scholar]
  • Reeder BJ, Wilson MT (2005) Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease States. Curr Med Chem 12:2741–51 [CrossRef] [PubMed] [Google Scholar]
  • Karam H, Bruneval P, Clozel JP, Löffler BM, Bariéty J, Clozel M (1995) Role of endothelin in acute renal failure due to rhabdomyolysis in rats. J Pharmacol Exp Ther 274:481–6 [PubMed] [Google Scholar]
  • Benabe JE, Klahr S, Hoffman MK, Morrison AR (1980) Production of thromboxane A2 by the kidney in glycerol-induced acute renal failure in the rabbit. Prostaglandins 19:333–47 [CrossRef] [PubMed] [Google Scholar]
  • Hao K, Hanawa H, Ding L, et al (2011) Free heme is a danger signal inducing expression of proinflammatory proteins in cultured cells derived from normal rat hearts. Mol Immunol 48:1191–202 [CrossRef] [PubMed] [Google Scholar]
  • Agarwal A, Nick HS (2000) Renal response to tissue injury: lessons from heme oxygenase-1 geneablation and expression. J Am Soc Nephrol 11:965–73 [PubMed] [Google Scholar]
  • Nath KA, Balla G, Vercellotti GM, et al (1992) Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Invest 90:267–70 [CrossRef] [PubMed] [Google Scholar]
  • Nath KA, Haggard JJ, Croatt AJ, Grande JP, Poss KD, Alam J (2000) The indispensability of heme oxygenase-1 in protecting against acute heme protein-induced toxicity in vivo. Am J Pathol 156:1527–35 [CrossRef] [PubMed] [Google Scholar]
  • Zarjou A, Bolisetty S, Joseph R, et al (2013) Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J Clin Invest 123:4423–34 [CrossRef] [PubMed] [Google Scholar]
  • Belliere J, Casemayou A, Ducasse L, et al (2014) Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. J Am Soc Nephrol 26:1363–77 [CrossRef] [PubMed] [Google Scholar]
  • Rubio-Navarro A, Carril M, Padro D, et al (2016) CD163-macrophages are involved in rhabdomyolysis-induced kidney injury and may be detected by MRI with targeted gold-coated iron oxide nanoparticles. Theranostics 6:896–914 [CrossRef] [PubMed] [Google Scholar]
  • Mousavi SR, Vahabzadeh M, Mahdizadeh A, et al (2015) Rhabdomyolysis in 114 patients with acute poisonings. J Res Med Sci 20:239–43 [PubMed] [Google Scholar]
  • Melli G, Chaudhry V, Cornblath DR (2005) Rhabdomyolysis: an evaluation of 475 hospitalized patients. Medicine (Baltimore) 84:377–85 [CrossRef] [PubMed] [Google Scholar]
  • Llach F, Felsenfeld AJ, Haussler MR (1981) The pathophysiology of altered calcium metabolism in rhabdomyolysis-induced acute renal failure. Interactions of parathyroid hormone, 25-hydroxycholecalciferol, and 1,25-dihydroxycholecalciferol. N Engl J Med 305:117–23 [CrossRef] [PubMed] [Google Scholar]
  • Sever MS, Vanholder R (2013) Management of crush victims in mass disasters: highlights from recently published recommendations. Clin J Am Soc Nephrol 8:328–35 [CrossRef] [PubMed] [Google Scholar]
  • Zeng X, Zhang L, Wu T, Fu P (2014) Continuous renal replacement therapy (CRRT) for rhabdomyolysis. Cochrane Database Syst Rev 6:CD008566 [Google Scholar]
  • Premru V, Kovac J, Buturovic-Ponikvar J, Ponikvar R (2013) Some kinetic considerations in high cut-off hemodiafiltration for acute myoglobinuric renal failure. Ther Apher Dial 17:396–401 [CrossRef] [PubMed] [Google Scholar]
  • Heyne N, Guthoff M, Krieger J, Haap M, Häring HU (2013) High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series. Nephron Clin Pract 121:159–64 [CrossRef] [Google Scholar]
  • Premru V, Kovac J, Buturovic-Ponikvar J, Ponikvar R (2011) High cut-off membrane hemodiafiltration in myoglobinuric acute renal failure: a case series. Ther Apher Dial 15:287–91 [CrossRef] [PubMed] [Google Scholar]
  • Levin PD, Levin V, Weissman C, Sprung CL, Rund D (2015) Therapeutic plasma exchange as treatment for propofol infusion syndrome. J Clin Apher 30:311–3 [CrossRef] [PubMed] [Google Scholar]
  • Swaroop R, Zabaneh R, Parimoo N (2009) Plasmapheresis in a patient with rhabdomyolysis: a case report. Cases J 2:8138 [CrossRef] [PubMed] [Google Scholar]
  • Abul-Ezz SR, Walker PD, Shah SV (1991) Role of glutathione in an animal model of myoglobinuric acute renal failure. Proc Natl Acad Sci U S A 88:9833–7 [CrossRef] [PubMed] [Google Scholar]
  • Fernández-Fúnez A, Polo FJ, Broseta L, Valer J, Zafrilla L (2002) Effects of N-acetylcysteine on myoglobinuric-acute renal failure in rats. Ren Fail 24:725–33 [CrossRef] [PubMed] [Google Scholar]
  • Kim JH, Lee SS, Jung MH, et al (2010) N-acetylcysteine attenuates glycerol-induced acute kidney injury by regulating MAPKs and Bcl-2 family proteins. Nephrol Dial Transplant 25:1435–43 [CrossRef] [PubMed] [Google Scholar]
  • Kim YS, Jung MH, Choi MY, et al (2009) Glutamine attenuates tubular cell apoptosis in acute kidney injury via inhibition of the c-Jun N-terminal kinase phosphorylation of 14-3-3. Crit Care Med 37:2033–44 [CrossRef] [PubMed] [Google Scholar]
  • Ustundag S, Sen S, Yalcin O, Ciftci S, Demirkan B, Ture M (2009) L-Carnitine ameliorates glycerol-induced myoglobinuric acute renal failure in rats. Ren Fail 31:124–33 [CrossRef] [PubMed] [Google Scholar]
  • Liu Y, Fu X, Gou L, et al (2013) L-citrulline protects against glycerol-induced acute renal failure in rats. Ren Fail 35:367–73 [CrossRef] [PubMed] [Google Scholar]
  • Singh D, Chander V, Chopra K (2003) Carvedilol, an antihypertensive drug with antioxidant properties, protects against glycerol-induced acute renal failure. Am J Nephrol 23:415–21 [CrossRef] [PubMed] [Google Scholar]
  • Chander V, Chopra K (2006) Protective effect of resveratrol, a polyphenolic phytoalexin on glycerol-induced acute renal failure in rat kidney. Ren Fail 28:161–9 [CrossRef] [PubMed] [Google Scholar]
  • Subeq YM, Wu WT, Lee CJ, Lee RP, Yang FL, Hsu BG (2009) Pentobarbital reduces rhabdomyolysis-induced acute renal failure in conscious rats. J Trauma 67:132–8 [CrossRef] [PubMed] [Google Scholar]
  • Wang YD, Zhang L, Cai GY, et al (2011) Fasudil ameliorates rhabdomyolysis-induced acute kidney injury via inhibition of apoptosis. Ren Fail 33:811–8 [CrossRef] [PubMed] [Google Scholar]
  • Gu H, Yang M, Zhao X, Zhao B, Sun X, Gao X (2014) Pretreatment with hydrogen-rich saline reduces the damage caused by glycerol-induced rhabdomyolysis and acute kidney injury in rats. J Surg Res 188:243–9 [CrossRef] [PubMed] [Google Scholar]
  • Korrapati MC, Shaner BE, Schnellmann RG (2012) Recovery from glycerol-induced acute kidney injury is accelerated by suramin. J Pharmacol Exp Ther 341:126–36 [CrossRef] [PubMed] [Google Scholar]
  • Boutaud O, Moore KP, Reeder BJ, et al (2010) Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc Natl Acad Sci USA 107:2699–704 [CrossRef] [Google Scholar]
  • Shanu A, Groebler L, Kim HB, et al (2013) Selenium inhibits renal oxidation and inflammation but not acute kidney injury in an animal model of rhabdomyolysis. Antioxid Redox Signal 18:756–69 [CrossRef] [PubMed] [Google Scholar]
  • Yang FL, Subeq YM, Chiu YH, Lee RP, Lee CJ, Hsu BG (2012) Recombinant human erythropoietin reduces rhabdomyolysis-induced acute renal failure in rats. Injury 43:367–73 [CrossRef] [PubMed] [Google Scholar]
  • Homsi E, Janino P, de Faria JB (2006) Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int 69:1385–92 [CrossRef] [PubMed] [Google Scholar]
  • Tang WX, Wu WH, Qiu HY, Bo H, Huang SM (2013) Amelioration of rhabdomyolysis-induced renal mitochondrial injury and apoptosis through suppression of Drp-1 translocation. J Nephrol 26:1073–82 [CrossRef] [PubMed] [Google Scholar]
  • Tsurkan MV, Hauser PV, Zieris A, et al (2013) Growth factor delivery from hydrogel particle aggregates to promote tubular regeneration after acute kidney injury. J Control Release 167:248–55 [CrossRef] [PubMed] [Google Scholar]
  • Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14:1035–41 [PubMed] [Google Scholar]
  • Herrera MB, Bussolati B, Bruno S, et al (2007) Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72:430–41 [CrossRef] [PubMed] [Google Scholar]
  • Hauser PV, De Fazio R, Bruno S, et al (2010) Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol 177:2011–21 [CrossRef] [PubMed] [Google Scholar]
  • Baeza-Trinidad R, Brea-Hernando A, Morera-Rodriguez S, et al (2015) Creatinine as predictor value of mortality and acute kidney injury in rhabdomyolysis. Intern Med J 45:1173–8 [CrossRef] [PubMed] [Google Scholar]
  • Stewart IJ, Faulk TI, Sosnov JA, et al (2015) Rhabdomyolysis among critically ill combat casualties: associations with acute kidney injury and mortality. J Trauma Acute Care Surg 80:492–8 [CrossRef] [Google Scholar]
  • Sousa A, Paiva JA, Fonseca S, et al (2013) Rhabdomyolysis: risk factors and incidence in polytrauma patients in the absence of major disasters. Eur J Trauma Emerg Surg 39:131–7 [CrossRef] [PubMed] [Google Scholar]
  • de Meijer AR, Fikkers BG, de Keijzer MH, van Engelen BG, Drenth JP (2003) Serum creatine kinase as predictor of clinical course in rhabdomyolysis: a 5-year intensive care survey. Intensive Care Med 29:1121–5 [CrossRef] [PubMed] [Google Scholar]
  • Woodrow G, Brownjohn AM, Turney JH (1995) The clinical and biochemical features of acute renal failure due to rhabdomyolysis. Ren Fail 17:467–74 [CrossRef] [PubMed] [Google Scholar]
  • Zhang LY, Ding JT, Wang Y, Zhang WG, Deng XJ, Chen JH (2010) MRI quantitative study and pathologic analysis of crush injury in rabbit hind limb muscles. J Surg Res 167:357–63 [CrossRef] [Google Scholar]
  • Sever MS, Erek E, Vanholder R, et al (2003) Serum potassium in the crush syndrome victims of the Marmara disaster. Clin Nephrol 59:326–33 [CrossRef] [PubMed] [Google Scholar]
  • Sever MS, Erek E, Vanholder R, et al (2002) Treatment modalities and outcome of the renal victims of the Marmara earthquake. Nephron 92:64–71 [CrossRef] [PubMed] [Google Scholar]
  • Zhang L, Fu P, Wang L, et al (2012) The clinical features and outcome of crush patients with acute kidney injury after the Wenchuan earthquake: differences between elderly and younger adults. Injury 43:1470–5 [CrossRef] [PubMed] [Google Scholar]
  • Vanholder R, Gibney N, Luyckx VA, Sever MS (2010) Renal disaster relief task force in Haiti earthquake. Lancet 375:1162–3 [CrossRef] [Google Scholar]
  • Agence de la biomédecine (2012) Rapport annuel Réseau épidémiologique et information en néphrologie (REIN) [Google Scholar]
  • Sathyan S, Baskharoun R, Perlman AS (2013) Prevention of recurrent episodes of rhabdomyolysis with tacrolimus in a transplant recipient with myopathy. Am J Ther 5:171–4 [Google Scholar]
  • McCarron DA, Royer KA, Houghton DC, Bennett WM (1980) Chronic tubulointerstitial nephritis caused by recurrent myoglobinuria. Arch Intern Med 140:1106–7 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.