Accès gratuit
Méd. Intensive Réa
Volume 25, Numéro 5, Septembre 2016
Médecine d'urgence-Neuroréanimation
Page(s) 464 - 474
Section Mise Au Point / Update
Publié en ligne 8 avril 2016
  • Atwood C, Eisenberg MS, Herlitz J, Rea TD (2005) Incidence of EMS-treated out-of-hospital cardiac arrest in Europe. Resuscitation 67:75–80 [CrossRef] [PubMed] [Google Scholar]
  • Mozaffarian D, Benjamin EJ, Go AS, et al (2015) Heart disease and stroke statistics — 2015 update: a report from the American Heart Association. Circulation 131:e29–e322 [CrossRef] [PubMed] [Google Scholar]
  • Bougouin W, Lamhaut L, Marijon E, et al (2014) Characteristics and prognosis of sudden cardiac death in Greater Paris. Intensive Care Med 40:846–54 [CrossRef] [PubMed] [Google Scholar]
  • Lemiale V, Dumas F, Mongardon N, et al (2013) Intensive care unit mortality after cardiac arrest: the relative contribution of shock and brain injury in a large cohort. Intensive Care Med 39:1972–80 [CrossRef] [PubMed] [Google Scholar]
  • Negovsky VA (1972) The second step in resuscitation — the treatment of the “post-resuscitation”disease. Resuscitation 1; 1–7 [CrossRef] [PubMed] [Google Scholar]
  • Eltzschig HK, Eckle T (2011) Ischemia and reperfusion — from mechanism to translation. Nat Med 17:1391–401 [CrossRef] [PubMed] [Google Scholar]
  • Adrie C, Adib-Conquy M, Laurent I, et al (2002) Successful cardiopulmonary resuscitation after cardiac arrest as a “sepsis-like” syndrome. Circulation 106:562–8 [CrossRef] [PubMed] [Google Scholar]
  • Adrie C, Monchi M, Laurent I, et al (2005) Coagulopathy after successful cardiopulmonary resuscitation following cardiac arrest: implication of the protein C anticoagulant pathway. JACC 46:21–8 [CrossRef] [Google Scholar]
  • Grimaldi D, Guivarch E, Neveux N, et al (2013) Markers of intestinal injury are associated with endotoxemia in successfully resuscitated patients. Resuscitation 84:60–5 [CrossRef] [PubMed] [Google Scholar]
  • Grimaldi D, Sauneuf B, Guivarch E, et al (2015) High level of endotoxemia following out-of-hospital cardiac arrest is associated with severity and duration of postcardiac arrest shock. Crit Care Med 43:2597–604 [CrossRef] [PubMed] [Google Scholar]
  • Laurent I, Monchi M, Chiche JD, et al (2002) Reversible myocardial dysfunction in survivors of out-of-hospital cardiac arrest. JACC 40:2110–2116. [Google Scholar]
  • Schmidt-Schweda S, Ohler A, Post H, Pieske B (2013) Moderate hypothermia for severe cardiogenic shock (COOL Shock Study I & II). Resuscitation 84:319–25 [CrossRef] [PubMed] [Google Scholar]
  • Ruiz-Bailén M, Aguayo de Hoyos E, Ruiz-Navarro S, et al (2005) Reversible myocardial dysfunction after cardiopulmonary resuscitation. Resuscitation 66:175–81 [CrossRef] [PubMed] [Google Scholar]
  • Kern KB, Hilwig RW, Rhee KH, Berg RA (1996) Myocardial dysfunction after resuscitation from cardiac arrest: an example of global myocardial stunning. JACC 28:232–40 [CrossRef] [Google Scholar]
  • Deantonio HJ, Kaul S, Lerman BB (1990) Reversible myocardial depression in survivors of cardiac arrest. Pacing Clin Electrophysiol 13:982–5 [CrossRef] [PubMed] [Google Scholar]
  • Fries M, Weil MH, Chang YT, et al (2006) Microcirculation during cardiac arrest and resuscitation. Crit Care Med 34:S454–S7 [CrossRef] [PubMed] [Google Scholar]
  • Bougouin W, Cariou A (2013) Management of postcardiac arrest myocardial dysfunction. Curr Opin Crit Care 19:195–201 [CrossRef] [PubMed] [Google Scholar]
  • Tang W, Weil MH, Sun S, et al (1995) Epinephrine increases the severity of postresuscitation myocardial dysfunction. circulation 92:3089–93 [CrossRef] [PubMed] [Google Scholar]
  • Gazmuri RJ (2000) Effects of repetitive electrical shocks on postresuscitation myocardial function. Crit Care Med 28:N228–N32 [CrossRef] [PubMed] [Google Scholar]
  • Mattana J, Singhal PC (1992) Determinants of elevated creatine kinase activity and creatine kinase MB-fraction following cardiopulmonary resuscitation. Chest 101:1386–92 [CrossRef] [PubMed] [Google Scholar]
  • Kern KB, Hilwig RW, Berg RA, et al (1997) Postresuscitation left ventricular systolic and diastolic dysfunction: treatment with dobutamine. Circulation 95:2610–3 [CrossRef] [PubMed] [Google Scholar]
  • Huang L, Weil MH, Tang W, et al (2005) Comparison between dobutamine and levosimendan for management of postresuscitation myocardial dysfunction. Crit Care Med 33:487–91 [CrossRef] [PubMed] [Google Scholar]
  • Kakavas S, Chalkias A, Xanthos T (2011) Vasoactive support in the optimization of post-cardiac arrest hemodynamic status: from pharmacology to clinical practice. Eur J Pharmacol 667:32–40 [CrossRef] [PubMed] [Google Scholar]
  • Manzo-Silberman S, Fichet J, Mathonnet A, et al (2013) Percutaneous left ventricular assistance in post cardiac arrest shock: comparison of intra aortic blood pump and IMPELLA Recover LP2.5. Resuscitation 84:609–15 [CrossRef] [PubMed] [Google Scholar]
  • Tsai MS, Barbut D, Tang W, et al (2008) Rapid head cooling initiated coincident with cardiopulmonary resuscitation improves success of defibrillation and post-resuscitation myocardial function in a porcine model of prolonged cardiac arrest. J Am Coll Cardiol 51:1988–90. doi: 10.1016/j.jacc.2007.12.057 [CrossRef] [PubMed] [Google Scholar]
  • Hsu CY, Huang CH, Chang WT, et al (2009) Cardioprotective effect of therapeutic hypothermia for postresuscitation myocardial dysfunction. Shock 32:210–6 [CrossRef] [PubMed] [Google Scholar]
  • Skulec R, Kovarnik T, Dostalova G, et al (2008) Induction of mild hypothermia in cardiac arrest survivors presenting with cardiogenic shock syndrome. Acta Anaesthesiol Scand 52:188–94 [CrossRef] [PubMed] [Google Scholar]
  • Nielsen N, Wetterslev J, Cronberg T, et al (2013) Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. N Engl J Med 369:2197–206 [CrossRef] [PubMed] [Google Scholar]
  • Bro-Jeppesen J, Annborn M, Hassager C, et al (2015) Hemodynamics and vasopressor support during targeted temperature management at 33 °C versus 36 °C after out-of-hospital cardiac arrest: a post hoc study of the target temperature management trial*. Crit Care Med 43:318–27 [CrossRef] [PubMed] [Google Scholar]
  • Bro-Jeppesen J, Hassager C, Wanscher M, et al (2014) Targeted temperature management at 33 °C versus 36 °C and impact on systemic vascular resistance and myocardial function after out-of-hospital cardiac arrest: a sub-study of the Target Temperature Management Trial. Circulation. Circ Cardiovasc Interv 7:663–72 [CrossRef] [PubMed] [Google Scholar]
  • Geri G, Guillemet L, Dumas F, et al (2015) Acute kidney injury after out-of-hospital cardiac arrest: risk factors and prognosis in a large cohort. Intensive Care Med 41:1273–80 [CrossRef] [PubMed] [Google Scholar]
  • Yanta J, Guyette FX, Doshi AA, et al (2013) Renal dysfunction is common following resuscitation from out-of-hospital cardiac arrest. Resuscitation 84:1371–4 [CrossRef] [PubMed] [Google Scholar]
  • Oh SH, Kim HJ, Park KN, et al (2015) Hypoxic hepatitis in survivors of out-of-hospital cardiac arrest. Am J Emerg Med. 33:1166–70 [CrossRef] [PubMed] [Google Scholar]
  • Pène F, Hyvernat H, Mallet V, et al (2005) Prognostic value of relative adrenal insufficiency after out-of-hospital cardiac arrest. Intensive Care Med 31:627–33 [CrossRef] [PubMed] [Google Scholar]
  • Laver S, Farrow C, Turner D, Nolan J (2004) Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Med 30:2126–8 [CrossRef] [PubMed] [Google Scholar]
  • Busl KM, Greer DM (2010) Hypoxic-ischemic brain injury: pathophysiology, neuropathology and mechanisms. NeuroRehabilitation 26:5–13 [PubMed] [Google Scholar]
  • Hoxworth JM, Xu K, Zhou Y, et al (1999) Cerebral metabolic profile, selective neuron loss, and survival of acute and chronic hyperglycemic rats following cardiac arrest and resuscitation. Brain Res 821:467–79 [CrossRef] [PubMed] [Google Scholar]
  • Lemiale V, Huet O, Vigué B, et al (2008) Changes in cerebral blood flow and oxygen extraction during post-resuscitation syndrome. Resuscitation 76:17–24 [CrossRef] [PubMed] [Google Scholar]
  • Böttiger BW, Schmitz B, Wiessner C, et al (1998) Neuronal stress response and neuronal cell damage after cardiocirculatory arrest in rats. J Cereb Blood Flow Metab 18:1077–87 [CrossRef] [PubMed] [Google Scholar]
  • Kawai K, Nitecka L, Ruetzler CA, et al (1992) Global cerebral ischemia associated with cardiac arrest in the rat: I. Dynamics of early neuronal changes. J Cereb Blood Flow Metab 12:238–49 [CrossRef] [PubMed] [Google Scholar]
  • Vaagenes P, Safar P, Moossy J, et al (1997) Asphyxiation versus ventricular fibrillation cardiac arrest in dogs. Differences in cerebral resuscitation effects — a preliminary study. Resuscitation 35:41–52 [CrossRef] [PubMed] [Google Scholar]
  • Geri G, Mongardon N, Daviaud F, et al (2014) Neurological consequences of cardiac arrest: where do we stand? Ann Fr Anesth Reanim 33:98–101 [CrossRef] [PubMed] [Google Scholar]
  • Seder DB, Sunde K, Rubertsson S, et al (2015) Neurologic outcomes and postresuscitation care of patients with myoclonus following cardiac arrest. Crit Care Med 43:965–72 [CrossRef] [PubMed] [Google Scholar]
  • Adrie C, Haouache H, Saleh M, et al (2008) An underrecognized source of organ donors: patients with brain death after successfully resuscitated cardiac arrest. Intensive Care Med 34:132–7 [CrossRef] [PubMed] [Google Scholar]
  • Bouwes A, Binnekade JM, Kuiper MA, et al (2012) Prognosis of coma after therapeutic hypothermia: a prospective cohort study. Ann Neurol 71:206–12 [CrossRef] [PubMed] [Google Scholar]
  • Bernard SA, Gray TW, Buist MD, et al (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–63 [CrossRef] [PubMed] [Google Scholar]
  • Nolan JP, Soar J, Cariou A, et al (2015) European Resuscitation Council and European Society of Intensive Care Medicine 2015 guidelines for post-resuscitation care. Intensive Care Med 41:2039–56 [CrossRef] [PubMed] [Google Scholar]
  • Callaway CW, Donnino MW, Fink EL, et al (2015) Part 8: Post-cardiac arrest care: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 132:S465–S82 [CrossRef] [PubMed] [Google Scholar]
  • Morrison LJ, Gent LM, Lang E, et al (2015) Part 2: Evidence evaluation and management of conflicts of interest: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation 132:S368–S82 [CrossRef] [PubMed] [Google Scholar]
  • Williams GR, Spencer FC (1958) The clinical use of hypothermia following cardiac arrest. Ann Surg 148:462–8 [CrossRef] [PubMed] [Google Scholar]
  • Hypothermia after Cardiac Arrest Study Group (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–56 [CrossRef] [PubMed] [Google Scholar]
  • Nielsen N, Sunde K, Hovdenes J, et al (2011) Adverse events and their relation to mortality in out-of-hospital cardiac arrest patients treated with therapeutic hypothermia. Crit Care Med 39:57–64 [CrossRef] [PubMed] [Google Scholar]
  • Dumas F, Grimaldi D, Zuber B, et al (2011) Is hypothermia after cardiac arrest effective in both shockable and nonshockable patients? Insights from a large registry. Circulation 123:877–86 [CrossRef] [PubMed] [Google Scholar]
  • Testori C, Sterz F, Behringer W, et al (2011) Mild therapeutic hypothermia is associated with favourable outcome in patients after cardiac arrest with non-shockable rhythms. Resuscitation 82:1162–7 [CrossRef] [PubMed] [Google Scholar]
  • Lascarrou JB, Meziani F, Le Gouge A, et al (2015) Therapeutic hypothermia after nonshockable cardiac arrest: the HYPERION multicenter, randomized, controlled, assessor-blinded, superiority trial. Scand J Trauma Resusc Emerg Med 23:26 [CrossRef] [PubMed] [Google Scholar]
  • Seder DB, Van der Kloot TE (2009) Methods of cooling: practical aspects of therapeutic temperature management. Crit Care Med 37:S211–S22 [CrossRef] [PubMed] [Google Scholar]
  • Chenoune M, Lidouren F, Adam C, et al (2011) Ultrafast and whole-body cooling with total liquid ventilation induces favorable neurological and cardiac outcomes after cardiac arrest in rabbits. Circulation. 124:901–11, 1–7 [CrossRef] [PubMed] [Google Scholar]
  • Bouwes A, Robillard LBM, Binnekade JM, et al (2012) The influence of rewarming after therapeutic hypothermia on outcome after cardiac arrest. Resuscitation 83:996–1000 [CrossRef] [PubMed] [Google Scholar]
  • Cocchi MN, Boone MD, Giberson B, et al (2014) Fever after rewarming: incidence of pyrexia in postcardiac arrest patients who have undergone mild therapeutic hypothermia. J Intensive Care Med 29:365–9 [CrossRef] [PubMed] [Google Scholar]
  • Farb A, Tang AL, Burke AP, et al (1995) Sudden coronary death. Frequency of active coronary lesions, inactive coronary lesions, and myocardial infarction. Circulation 92:1701–9 [CrossRef] [PubMed] [Google Scholar]
  • Spaulding CM, Joly LM, Rosenberg A, et al (1997) Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. N Engl J Med 336:1629–33 [CrossRef] [PubMed] [Google Scholar]
  • Dumas F, Cariou A, Manzo-Silberman S, et al (2010) Immediate percutaneous coronary intervention is associated with better survival after out-of-hospital cardiac arrest: insights from the PROCAT (Parisian region out of hospital cardiac arrest) registry. Circ Cardiovasc Interv 3:200–7 [CrossRef] [PubMed] [Google Scholar]
  • Dumas F, Manzo-Silberman S, Fichet J, et al (2012) Can early cardiac troponin I measurement help to predict recent coronary occlusion in out-of-hospital cardiac arrest survivors? Crit Care Med 40:1777–84 [CrossRef] [PubMed] [Google Scholar]
  • Geri G, Mongardon N, Dumas F, et al (2013) Diagnosis performance of high sensitivity troponin assay in out-of-hospital cardiac arrest patients. Int J Cardiol 169:449–54 [CrossRef] [PubMed] [Google Scholar]
  • Dumas F, White L, Stubbs BA, et al (2012) Long-term prognosis following resuscitation from out of hospital cardiac arrest: role of percutaneous coronary intervention and therapeutic hypothermia. J Am Coll Cardiol 60:21–7 [CrossRef] [PubMed] [Google Scholar]
  • Geri G, Dumas F, Bougouin W, et al (2015) Immediate percutaneous coronary intervention is associated with improved short- and long-term survival after out-of-hospital cardiac arrest. Circ Cardiovasc Interv 8:e002303 [CrossRef] [PubMed] [Google Scholar]
  • Anyfantakis ZA, Baron G, Aubry P, et al (2009) Acute coronary angiographic findings in survivors of out-of-hospital cardiac arrest. Am Heart J 157:312–8 [CrossRef] [PubMed] [Google Scholar]
  • Kilgannon JH, Jones AE, Shapiro NI, et al (2010) Association between arterial hyperoxia following resuscitation from cardiac arrest and in-hospital mortality. JAMA 303:2165–71 [CrossRef] [PubMed] [Google Scholar]
  • Vereczki V, Martin E, Rosenthal RE, et al (2006) Normoxic resuscitation after cardiac arrest protects against hippocampal oxidative stress, metabolic dysfunction, and neuronal death. J Cereb Blood Flow Metab 26:821–35 [CrossRef] [PubMed] [Google Scholar]
  • Zwemer CF, Whitesall SE, D'Alecy LG (1994) Cardiopulmonary-cerebral resuscitation with 100% oxygen exacerbates neurological dysfunction following nine minutes of normothermic cardiac arrest in dogs. Resuscitation 27:159–70 [CrossRef] [PubMed] [Google Scholar]
  • Roberts BW, Kilgannon JH, Chansky ME, et al (2013) Association between postresuscitation partial pressure of arterial carbon dioxide and neurological outcome in patients with post-cardiac arrest syndrome. Circulation 127:2107–13 [CrossRef] [PubMed] [Google Scholar]
  • Honore PM, Jamez J, Wauthier M, et al (2000) Prospective evaluation of short-term, high-volume isovolemic hemofiltration on the hemodynamic course and outcome in patients with intractable circulatory failure resulting from septic shock. Crit Care Med 28:3581–7 [CrossRef] [PubMed] [Google Scholar]
  • Laurent I, Adrie C, Vinsonneau C, et al (2005) High-volume hemofiltration after out-of-hospital cardiac arrest. J Am Coll Cardiol 46:432–7 [CrossRef] [PubMed] [Google Scholar]
  • Sirén AL, Fratelli M, Brines M, et al (2001) Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci USA 98:4044–9 [CrossRef] [Google Scholar]
  • Cour M, Loufouat J, Paillard M, et al (2011) Inhibition of mitochondrial permeability transition to prevent the post-cardiac arrest syndrome: a pre-clinical study. Eur Heart J 32:226–35 [CrossRef] [PubMed] [Google Scholar]
  • Tissier R, Hamanaka K, Kuno A, et al (2007) Total liquid ventilation provides ultra-fast cardioprotective cooling. J Am Coll Cardiol 49:601–5 [CrossRef] [PubMed] [Google Scholar]
  • Kohlhauer M, Lidouren F, Remy-Jouet I, et al (2015) Hypothermic total liquid ventilation is highly protective through cerebral hemodynamic preservation and sepsis-like mitigation after asphyxial cardiac arrest. Crit Care Med 43:e420–e30 [CrossRef] [PubMed] [Google Scholar]
  • Hutin A, Lidouren F, Kohlhauer M, et al (2015) Total liquid ventilation offers ultra-fast and whole-body cooling in large animals in physiological conditions and during cardiac arrest. Resuscitation 93:69–73 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.