Accès gratuit
Volume 25, Numéro 4, Juillet 2016
Médecine interne et transversalité
Page(s) 431 - 439
Section Comptes-Rendus de Congrès / Congresses, Conferences
Publié en ligne 7 avril 2016
  • Pries AR, Kuebler WM (2006) Normal endothelium. Handb Exp Pharmacol 176:1–40 [CrossRef] [Google Scholar]
  • Harrison DG, Widder J, Grumbach I, et al (2006) Endothelial mechanotransduction, nitric oxide and vascular inflammation. J Intern Med 259:351–63 [CrossRef] [PubMed] [Google Scholar]
  • Opal SM, van der Poll T (2015) Endothelial barrier dysfunction in septic shock. J Intern Med 277:277–93 [CrossRef] [PubMed] [Google Scholar]
  • Lopez A, Lorente JA, Steingrub J, et al (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30 [CrossRef] [PubMed] [Google Scholar]
  • Gomez E, Vercauteren M, Kurtz B, et al (2012) Reduction of heart failure by pharmacological inhibition or gene deletion of protein-tyrosine-phosphatase 1B. J Mol Cell Cardiol 52:1257–64 [CrossRef] [PubMed] [Google Scholar]
  • Roche C, Besnier M, Cassel R, et al (2015) Soluble epoxide hydrolase inhibition improves coronary endothelial function and prevents the development of cardiac alterations in obese insulin-resistant mice. Am J Physiol Heart Circ Physiol 308:H1020–H9 [CrossRef] [PubMed] [Google Scholar]
  • Asgeirsdottir SA, Kamps JA, Bakker HI, et al (2007) Site-specific inhibition of glomerulonephritis progression by targeted delivery of dexamethasone to glomerular endothelium. Mol Pharmacol 72:121–31 [CrossRef] [PubMed] [Google Scholar]
  • Nolan DJ, Ginsberg M, Israely E, et al (2013) Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell 26:204–19 [CrossRef] [PubMed] [Google Scholar]
  • Kreuger J, Phillipson M (2016) Targeting vascular and leukocyte communication in angiogenesis, inflammation and fibrosis. Nat Rev Drug Discov 15:125–42 [CrossRef] [PubMed] [Google Scholar]
  • Kumar S, Kim CW, Simmons RD, et al (2014) Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler Thromb Vasc Biol 34:2206–16 [CrossRef] [PubMed] [Google Scholar]
  • Rom S, Dykstra H, Zuluaga-Ramirez V, et al (2015) miR-98 and let-7g* protect the blood-brain barrier under neuroinflammatory conditions. J Cereb Blood Flow Metab 35:1957–65 [CrossRef] [PubMed] [Google Scholar]
  • Henrion D, Terzi F, Matrougui K, et al (1997) Impaired flow-induced dilation in mesenteric resistance arteries from mice lacking vimentin. J Clin Invest 100:2909–14 [CrossRef] [PubMed] [Google Scholar]
  • Loutzenhiser R, Bidani A, Chilton L (2002) Renal myogenic response: kinetic attributes and physiological role. Circ Res 90:1316–24 [CrossRef] [PubMed] [Google Scholar]
  • Ait-Oufella H, Maury E, Lehoux S, et al (2010) The endothelium: physiological functions and role in microcirculatory failure during severe sepsis. Intensive Care Med 36:1286–98 [CrossRef] [PubMed] [Google Scholar]
  • Loufrani L, Li Z, Levy BI, et al (2002) Excessive microvascular adaptation to changes in blood flow in mice lacking gene encoding for desmin. Arterioscler Thromb Vasc Biol 22:1579–84 [CrossRef] [PubMed] [Google Scholar]
  • Belin de Chantemele EJ, Vessieres E, Dumont O, et al (2009) Reactive oxygen species are necessary for high flow (shear stress)-induced diameter enlargement of rat resistance arteries. Microcirculation 16:391–402 [CrossRef] [PubMed] [Google Scholar]
  • Cousin M, Custaud MA, Baron-Menguy C, et al (2010) Role of angiotensin II in the remodeling induced by a chronic increase in flow in rat mesenteric resistance arteries. Hypertension 55:109–15 [CrossRef] [PubMed] [Google Scholar]
  • Levy BI, Schiffrin EL, Mourad JJ, et al (2008) Impaired tissue perfusion: a pathology common to hypertension, obesity, and diabetes mellitus. Circulation 118:968–76 [CrossRef] [PubMed] [Google Scholar]
  • Belin de Chantemele EJ, Vessieres E, Guihot AL, et al (2010) Cyclooxygenase-2 preserves flow-mediated remodelling in old obese Zucker rat mesenteric arteries. Cardiovasc Res 86:516–25 [CrossRef] [PubMed] [Google Scholar]
  • Freidja ML, Tarhouni K, Toutain B, et al (2012) The AGE-breaker ALT-711 restores high blood flow-dependent remodeling in mesenteric resistance arteries in a rat model of type 2 diabetes. Diabetes 61:1562–72 [CrossRef] [PubMed] [Google Scholar]
  • Delabranche X, Boisrame-Helms J, Asfar P, et al (2013) Microparticles are new biomarkers of septic shock-induced disseminated intravascular coagulopathy. Intensive Care Med 39:1695–703 [CrossRef] [PubMed] [Google Scholar]
  • Boisrame-Helms J, Delabranche X, Degirmenci SE, et al (2014) Pharmacological modulation of procoagulant microparticles improves haemodynamic dysfunction during septic shock in rats. Thromb Haemost 111:154–64 [CrossRef] [PubMed] [Google Scholar]
  • Simmons J, Pittet JF (2015) The coagulopathy of acute sepsis. Curr Opin Anaesthesiol 28:227–36 [CrossRef] [PubMed] [Google Scholar]
  • Diehl JL, Borgel D (2005) Sepsis and coagulation. Curr Opin Crit Care 11:454–60 [PubMed] [Google Scholar]
  • Lerolle N, Carlotti A, Melican K, et al (2013) Assessment of the interplay between blood and skin vascular abnormalities in adult purpura fulminans. Am J Respir Crit Care Med 188:684–92 [CrossRef] [PubMed] [Google Scholar]
  • Iba T, Nagaoka I, Boulat M (2013) The anticoagulant therapy for sepsis-associated disseminated intravascular coagulation. Thromb Res 131:383–9 [CrossRef] [PubMed] [Google Scholar]
  • Fujikawa K, Suzuki H, McMullen B, et al (2001) Purification of human von Willebrand factor-cleaving protease and its identification as a new member of the metalloproteinase family. Blood 98:1662–6 [CrossRef] [PubMed] [Google Scholar]
  • Gerritsen HE, Robles R, Lammle B, et al (2001) Partial amino acid sequence of purified von Willebrand factor-cleaving protease. Blood 98:1654–61 [CrossRef] [PubMed] [Google Scholar]
  • Furlan M, Robles R, Galbusera M, et al (1998) von Willebrand factor-cleaving protease in thrombotic thrombocytopenic purpura and the hemolytic-uremic syndrome. N Engl J Med 339:1578–84 [CrossRef] [PubMed] [Google Scholar]
  • Veyradier A, Obert B, Houllier A, et al (2001) Specific von Willebrand factor-cleaving protease in thrombotic microangiopathies: a study of 111 cases. Blood 98:1765–72 [CrossRef] [PubMed] [Google Scholar]
  • Benhamou Y, Assie C, Boelle PY, et al (2012) Development and validation of a predictive model for death in acquired severe ADAMTS13 deficiency-associated idiopathic thrombotic thrombocytopenic purpura: the French TMA Reference Center experience. Haematologica 97:1181–6 [CrossRef] [PubMed] [Google Scholar]
  • Mariotte E, Blet A, Galicier L, et al (2013) Unresponsive thrombotic thrombocytopenic purpura in critically ill adults. Intensive Care Med 39:1272–81 [CrossRef] [PubMed] [Google Scholar]
  • Froissart A, Buffet M, Veyradier A, et al (2012) Efficacy and safety of first-line rituximab in severe, acquired thrombotic thrombocytopenic purpura with a suboptimal response to plasma exchange. Experience of the French Thrombotic Microangiopathies Reference Center. Crit Care Med 40:104–11 [CrossRef] [PubMed] [Google Scholar]
  • Schiviz A, Wuersch K, Piskernik C, et al (2012) A new mouse model mimicking thrombotic thrombocytopenic purpura: correction of symptoms by recombinant human ADAMTS13. Blood 119:6128–35 [CrossRef] [PubMed] [Google Scholar]
  • Callewaert F, Roodt J, Ulrichts H, et al (2012) Evaluation of efficacy and safety of the anti-VWF Nanobody ALX-0681 in a preclinical baboon model of acquired thrombotic thrombocytopenic purpura. Blood 120:3603–10 [CrossRef] [PubMed] [Google Scholar]
  • Boerma EC, Kuiper MA, Kingma WP, et al (2008) Disparity between skin perfusion and sublingual microcirculatory alterations in severe sepsis and septic shock: a prospective observational study. Intensive Care Med 34:1294–8 [CrossRef] [PubMed] [Google Scholar]
  • Verdant CL, De Backer D, Bruhn A, et al (2009) Evaluation of sublingual and gut mucosal microcirculation in sepsis: a quantitative analysis. Crit Care Med 37:2875–81 [CrossRef] [PubMed] [Google Scholar]
  • De Backer D, Ospina-Tascon G, Salgado D, et al (2010) Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 36:1813–25 [CrossRef] [PubMed] [Google Scholar]
  • Boyle NH, Roberts PC, Ng B, et al (1999) Scanning Laser Doppler is a useful technique to assess foot cutaneous perfusion during femoral artery cannulation. Crit Care 3:95–100 [CrossRef] [PubMed] [Google Scholar]
  • Slaaf DW, Tangelder GJ, Reneman RS, et al (1987) A versatile incident illuminator for intravital microscopy. Int J Microcirc Clin Exp 6:391–7 [PubMed] [Google Scholar]
  • van Elteren HA, Ince C, Tibboel D, et al (2015) Cutaneous microcirculation in preterm neonates: comparison between sidestream dark field (SDF) and incident dark field (IDF) imaging. J Clin Monit Comput 29:543–8 [CrossRef] [PubMed] [Google Scholar]
  • den Uil CA, Bezemer R, Miranda DR, et al (2009) Intra-operative assessment of human pulmonary alveoli in vivo using Sidestream Dark Field imaging: a feasibility study. Med Sci Monit 15:MT137–MT41 [PubMed] [Google Scholar]
  • Taccone FS, Su F, De Deyne C, et al (2014) Sepsis is associated with altered cerebral microcirculation and tissue hypoxia in experimental peritonitis. Crit Care Med 42:e114–e22 [CrossRef] [PubMed] [Google Scholar]
  • Trzeciak S, Dellinger RP, Parrillo JE, et al (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49:88–98, 98 e81–e2 [CrossRef] [PubMed] [Google Scholar]
  • de Boer J, Potthoff H, Mulder PO, et al (1994) Lactate monitoring with subcutaneous microdialysis in patients with shock: a pilot study. Circ Shock 43:57–63 [PubMed] [Google Scholar]
  • Mulier KE, Skarda DE, Taylor JH, et al (2008) Near-infrared spectroscopy in patients with severe sepsis: correlation with invasive hemodynamic measurements. Surg Infect (Larchmt) 9:515–9 [CrossRef] [PubMed] [Google Scholar]
  • Creteur J, Carollo T, Soldati G, et al (2007) The prognostic value of muscle StO2 in septic patients. Intensive Care Med 33:1549–56 [CrossRef] [PubMed] [Google Scholar]
  • Weil MH, Nakagawa Y, Tang W, et al (1999) Sublingual capnometry: a new noninvasive measurement for diagnosis and quantitation of severity of circulatory shock. Crit Care Med 27:1225–9 [CrossRef] [PubMed] [Google Scholar]
  • Marechal X, Favory R, Joulin O, et al (2008) Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 29:572–6 [PubMed] [Google Scholar]
  • Ait-Oufella H, Lemoinne S, Boelle PY, et al (2011) Mottling score predicts survival in septic shock. Intensive Care Med 37:801–7 [CrossRef] [PubMed] [Google Scholar]
  • De Backer D, Creteur J, Preiser JC, et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104 [CrossRef] [PubMed] [Google Scholar]
  • Pottecher J, Deruddre S, Teboul JL, et al (2010) Both passive leg raising and intravascular volume expansion improve sublingual microcirculatory perfusion in severe sepsis and septic shock patients. Intensive Care Med 36:1867–74 [CrossRef] [PubMed] [Google Scholar]
  • Ospina-Tascon G, Neves AP, Occhipinti G, et al (2010) Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med 36:949–55 [CrossRef] [PubMed] [Google Scholar]
  • De Backer D, Verdant C, Chierego M, et al (2006) Effects of drotrecogin alfa activated on microcirculatory alterations in patients with severe sepsis. Crit Care Med 34:1918–24 [CrossRef] [PubMed] [Google Scholar]
  • Favory R, Poissy J, Alves I, et al (2013) Activated protein C improves macrovascular and microvascular reactivity in human severe sepsis and septic shock. Shock 40:512–8 [CrossRef] [PubMed] [Google Scholar]
  • Ranieri VM, Thompson BT, Barie PS, et al (2012) Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 366:2055–64 [CrossRef] [PubMed] [Google Scholar]
  • Spronk PE, Ince C, Gardien MJ, et al (2002) Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet 360:1395–6 [CrossRef] [PubMed] [Google Scholar]
  • Boerma EC, Koopmans M, Konijn A, et al (2010) Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial. Crit Care Med 38:93–100 [CrossRef] [PubMed] [Google Scholar]
  • Ait-Oufella H, Bakker J (2016) Understanding clinical signs of poor tissue perfusion during septic shock. Intensive Care Med (in press) [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.