Accès gratuit
Volume 25, Numéro 3, Mai 2016
Page(s) 340 - 347
Section Mise Au Point / Update
Publié en ligne 7 mars 2016
  • The EPISEPSIS study group (2004) EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med 30:580–8 [CrossRef] [PubMed] [Google Scholar]
  • Seymour CW, Rea TD, Kahn JM, et al (2012) Severe sepsis in pre-hospital emergency care. Am J Respir Crit Care Med 186:1264–71 [CrossRef] [PubMed] [Google Scholar]
  • Vincent JL, Sakr Y, Sprung CL, et al (2006) Sepsis in European intensive care units: results of the SOAP study. Crit Care Med 34:344–53 [CrossRef] [PubMed] [Google Scholar]
  • Ricard-Hibon A, Losser MR, Kong R, et al (1998) Systemic pressure-flow reactivity to norepinephrine in rabbits: impact of endotoxin and fluid loading. Intensive Care Med 24:959–66 [CrossRef] [PubMed] [Google Scholar]
  • Suffredini AF, Fromm RE, Parker MM, et al (1989) The cardiovascular response of normal humans to the administration of endotoxin. N Engl J Med 321:280–7 [CrossRef] [PubMed] [Google Scholar]
  • Cholley B, Lang RM, Berger DS, et al (1995) Alterations in systemic arterial mechanical properties during septic shock: role of fluid resuscitation. Am J Physiol 269:H375–H84 [PubMed] [Google Scholar]
  • Caroll GC, Snyder JV (1982) Hyperdynamic severe intravascular sepsis depends on fluid administration in cynomolgus monkey. Am J Physiol 243:R131–R41 [PubMed] [Google Scholar]
  • Rackow EC, Kaufman BS, Falk JL, et al (1987) Hemodynamic response to fluid repletion in patients with septic shock: evidence for early depression of cardiac performance. Circ Shock 22:11–22 [PubMed] [Google Scholar]
  • Parker MM, Shelhamer JH, Bacharach SL, et al (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483–90 [CrossRef] [PubMed] [Google Scholar]
  • Jardin F, Valtier B, Beauchet A, et al (1994) Invasive monitoring combined with two-dimensional echocardiographic study in septic shock. Intensive Care Med 20:550–4 [CrossRef] [PubMed] [Google Scholar]
  • Boufferache K, Amiel JB, Chimot L, et al (2012) Initial resuscitation guided by the Surviving Sepsis Campaign recommendations and early echocardiographic assessment of hemodynamics in intensive care unit septic patients: a pilot study. Crit Care Med 40:2821–7 [CrossRef] [PubMed] [Google Scholar]
  • Joulin O, Marechaux S, Hassoun S, et al (2009) Cardiac force-frequency relationship and frequency-dependent acceleration of relaxation are impaired in LPS-treated rats. Crit Care 13:R14 [CrossRef] [PubMed] [Google Scholar]
  • Hochstadt A, Meroz Y, Landesberg G (2011) Myocardial dysfunction in severe sepsis and septic shock: more questions than answers? J Cardiothorac Vasc Anesth 25:526–35 [CrossRef] [PubMed] [Google Scholar]
  • Rudiger A, Singer M (2007) Mechanisms of sepsis-induced cardiac dysfunction. Crit Care Med 35:1599–608 [CrossRef] [PubMed] [Google Scholar]
  • Cunnion RE, Schaer GL, Parker MM, et al (1986) The coronary circulation in human septic shock. Circulation 73:637–44 [CrossRef] [PubMed] [Google Scholar]
  • Dhainaut JF, Huyghebaert MF, Monsallier JF, et al (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose, and ketones in patients with septic shock. Circulation 75:533–41 [CrossRef] [PubMed] [Google Scholar]
  • Groeneveld AB, Van Lambalgen AA, Van Den Bos GC, et al (1991) Maldistribution of heterogeneous coronary blood flow during canine endotoxin shock. Cardiovasc Res 25:80–8 [CrossRef] [PubMed] [Google Scholar]
  • Watts JA, Kline JA, Thornton LR, et al (2004) Metabolic dysfunction and depletion and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol 36:141–50 [CrossRef] [PubMed] [Google Scholar]
  • Parrillo JE, Burch C, Shelhamer JH, et al (1985) A circulating myocardial depressant substance in humans with septic shock. Septic shock patients with a reduced ejection fraction have a circulating factor that depresses in vitro myocardial cell performance. J Clin Invest 76:1539–53 [CrossRef] [PubMed] [Google Scholar]
  • Kumar A, Thota V, Dee L, et al (1996) Tumor necrosis-alpha and interleukin-1 beta are responsible for depression of in-vitro myocardial cell contractility induced by serum from human septic shock. J Exp Med 183:949–58 [CrossRef] [PubMed] [Google Scholar]
  • Landesberg G, Levin PD, Gilon D, et al (2015) Myocardial dysfunction in severe sepsis and septic shock. No correlation with inflammatory cytokines in real-life clinical setting. Chest 148:93–102 [CrossRef] [PubMed] [Google Scholar]
  • Kumar A, Brar R, Wang P, et al (1999) Role of nitric oxide and cGMP in human septic serum-induced depression of cardiac myocyte contractility. Am J Physiol 276:R265–R76 [PubMed] [Google Scholar]
  • Tavernier B, Mebazaa A, Mateo P, et al (2001) Phosphorylation-dependent alteration in myofilament calcium sensitivity but normal mitochondrial function in septic heart. Am J Respir Crit Care Med 163:362–7 [CrossRef] [PubMed] [Google Scholar]
  • Vieillard-Baron A, Cecconi M (2014) Understanding cardiac failure in sepsis. Intensive Care Med 40:1560–3 [CrossRef] [PubMed] [Google Scholar]
  • Natanson C, Fink MP, Ballantyne HK, et al (1986) Gram-negative bacteremia produces both severe systolic and diastolic cardiac dysfunction in a canine model that simulates human septic shock. J Clin Invest 78:259–70 [CrossRef] [PubMed] [Google Scholar]
  • Ellrodt AG, Riedinger MS, Kimchi A, et al (1985) Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J 110:402–9 [CrossRef] [PubMed] [Google Scholar]
  • Natanson C, Danner RL, Elin RJ, et al (1989) Role of endotoxemia in cardiovascular dysfunction and mortality. Escherichia coli and Staphylococcus aureus challenges in a canine model of human septic shock. J Clin Invest 83:243–51 [CrossRef] [PubMed] [Google Scholar]
  • Ozier Y, Guéret P, Jardin F, et al (1984) Two-dimensional echocardiographic demonstration of acute myocardial depression in septic shock. Crit Care Med 12:596–9 [CrossRef] [PubMed] [Google Scholar]
  • Jardin F, Brun-Ney D, Auvert B, et al (1990) Sepsis-related cardiogenic shock. Crit Care Med 18:1055–60 [CrossRef] [PubMed] [Google Scholar]
  • Huang SJ, Nalos M, McLean AS (2013) Is early ventricular dysfunction or dilatation associated with lower mortality rate in adult severe sepsis and septic shock? A meta-analysis. Crit Care 17:R96 [CrossRef] [PubMed] [Google Scholar]
  • Vieillard-Baron A, Caille V, Charron C, et al (2008) Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 36:1701–6 [CrossRef] [PubMed] [Google Scholar]
  • Ellrodt AG, Riedinger MS, Kimchi A, et al (1985) Left ventricular performance in septic shock: reversible segmental and global abnormalities. Am Heart J 110:402–9 [CrossRef] [PubMed] [Google Scholar]
  • Sanfilippo F, Corredor C, Fletcher N, et al (2015) Diastolic dysfunction and mortality in septic patients: a systematic review and meta-analysis. Intensive Care Med 41:1004–13 [CrossRef] [PubMed] [Google Scholar]
  • Landesberg G, Gilon D, Meroz Y, et al (2012) Diastolic dysfunction and mortality in severe sepsis and septic shock. Eur Heart J 33:895–903 [CrossRef] [PubMed] [Google Scholar]
  • Landesberg G, Jaffe AS, Gilon D, et al (2014) Troponin elevation in severe sepsis and septic shock: the role of left ventricular diastolic dysfunction and right ventricular dilatation. Crit Care Med 42:790–800 [CrossRef] [PubMed] [Google Scholar]
  • Vieillard Baron A, Schmitt JM, Beauchet A, et al (2001) Early preload adaptation in septic shock? A transesophageal echocardiographic study. Anesthesiology 94:400–6 [CrossRef] [PubMed] [Google Scholar]
  • Chauvet JL, El-Dash S, Delastre O, et al (2015) Early dynamic left intraventricular obstruction is associated with hypovolemia and high mortality in septic shock patients. Crit Care 19:262 [Google Scholar]
  • Weng L, Liu Y, Du B, et al (2012) The prognostic value of left ventricular systolic function measured by tissue Doppler imaging in septic shock. Crit Care 16:R71 [CrossRef] [PubMed] [Google Scholar]
  • Hestenes SM, Halvorsen PS, Skulstad H, et al (2014) Advantages of strain echocardiography in assessment of myocardial function in severe sepsis: an experimental study. Crit Care Med 42:e432–e40 [CrossRef] [PubMed] [Google Scholar]
  • Basu S, Frank LH, Fenton KE, et al (2012) Two-dimensional speckle tracking imaging detects impaired myocardial performance in children with septic shock, not recognized by conventional echocardiography. Pediatr Crit Care Med 13:259–64 [CrossRef] [PubMed] [Google Scholar]
  • Chang WT, Lee WH, Lee WT, et al (2015) Left ventricular global longitudinal strain as an independent prognostic predictor in patients with septic shock under intensive care. Intensive Care Med 41:1791–9 [CrossRef] [PubMed] [Google Scholar]
  • Orde SR, Pulido JN, Masaki M, et al (2014) Outcome prediction in sepsis: speckle tracking echocardiography based assessment of myocardial function. Crit Care 18:R149 [CrossRef] [PubMed] [Google Scholar]
  • Vignon P, Huang SJ (2015) Global longitudinal strain in septic cardiomyopathy: the hidden part of the iceberg? [Editorial] Intensive Care Med 41:1851–3 [CrossRef] [PubMed] [Google Scholar]
  • Etchecopar-Chevreuil C, François B, Clavel M, et al (2008) Cardiac morphological and functional changes during early septic shock: a transesophageal echocardiographic study. Intensive Care Med 34:250–6 [CrossRef] [PubMed] [Google Scholar]
  • Jardin F, Fourme T, Page B, et al (1999) Persistent preload defect in severe sepsis despite fluid loading. A longitudinal echocardiographic study in patients with septic shock. Chest 116:1354–9 [CrossRef] [PubMed] [Google Scholar]
  • Sturgess DJ, Marwick TH, Joyce C, et al (2010) Prediction of hospital outcome in septic shock: a prospective comparison of tissue Doppler and cardiac biomarkers. Crit Care 14:R44 [CrossRef] [PubMed] [Google Scholar]
  • Vignon P (2013) Ventricular diastolic abnormalities in the critically ill. Curr Opin Crit Care 19:242–9 [CrossRef] [PubMed] [Google Scholar]
  • Pulido JN, Afessa B, Masaki M, et al (2012) Clinical spectrum, frequency, and significance of myocardial dysfunction in severe sepsis and septic shock. Mayo Clin Proc 87:620–8 [CrossRef] [PubMed] [Google Scholar]
  • Bouhemad B, Nicolas-Robin A, Arbelot C, et al (2008) Isolated and reversible impairment of ventricular relaxation in patients with septic shock. Crit Care Med 36:766–74 [CrossRef] [PubMed] [Google Scholar]
  • Mahjoub Y, Benoit-Fallet H, Airapetian N, et al (2012) Improvement of left ventricular relaxation as assessed by tissue Doppler imaging in fluid-responsive critically ill septic patients. Intensive Care Med 38:1461–70 [CrossRef] [PubMed] [Google Scholar]
  • Mokart D, Sannini A, Brun JP, et al (2007) N-terminal pro-brain natriuretic peptide as an early prognostic factor in cancer patients developing septic shock. Crit Care 11:R37 [CrossRef] [PubMed] [Google Scholar]
  • Mourad M, Chow-Chine L, Faucher M, et al (2014) Early diastolic dysfunction is associated with intensive care unit mortality in cancer patients presenting with septic shock. Br J Anaesth 112:102–9 [CrossRef] [PubMed] [Google Scholar]
  • Ouellette DR, Shah SZ (2014) Comparison of outcomes from sepsis between patients with and without pre-existing left ventricular dysfunction: a case-control analysis. Crit Care 18:R79 [CrossRef] [PubMed] [Google Scholar]
  • Parker MM, McCarthy KE, Orgibene FP, Parrillo JE (1990) Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 97:126–31 [CrossRef] [PubMed] [Google Scholar]
  • Kimchi A, Ellrodt AG, Berman DS, et al (1984) Right ventricular performance in septic shock: a combined radionuclide and hemodynamic study. J Am Coll Cardiol 4:945–51 [CrossRef] [PubMed] [Google Scholar]
  • Marland AM, Glauser FL (1982) Significance of the pulmonary artery diastolic-pulmonary wedge pressure gradient in sepsis. Crit Care Med 10:658–61 [CrossRef] [PubMed] [Google Scholar]
  • Ruiz Bailen M (2002) Reversible myocardial dysfunction in critically ill, non-cardiac patients: a review. Crit Care Med 30:1280–90 [CrossRef] [PubMed] [Google Scholar]
  • Boyd JH, Forbes J, Nakada T, et al (2011) Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 39:259–65 [CrossRef] [PubMed] [Google Scholar]
  • Morelli A, Ertmer C, Westphal M, et al (2013) Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA 310:1683–91 [CrossRef] [PubMed] [Google Scholar]
  • Ranieri M, Thompson BT, Barie PS, et al (2012). Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med 366:2055–64 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.