Accès gratuit
Numéro
Réanimation
Volume 25, Mai 2016
Infectieux
Page(s) S44 - S52
Section Mise Au Point / Update
DOI https://doi.org/10.1007/s13546-016-1185-4
Publié en ligne 14 mars 2016
  • Chandra RK (1997) Nutrition and the immune system: an introduction. Am J Clin Nutr 66:S460–S3 [Google Scholar]
  • Chandra RK (2002) Nutrition and the immune system from birth to old age. Eur J Clin Nutr 56:S73–S6 [CrossRef] [PubMed] [Google Scholar]
  • Cunningham-Rundles S, McNeeley DF, Moon A (2005) Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 115:1119–28 [CrossRef] [PubMed] [Google Scholar]
  • Minard G, Kudsk KA (1998) Nutritional support and infection: does the route matter? World J Surg 22:213–9 [CrossRef] [PubMed] [Google Scholar]
  • Zilberberg MD, Kramer AA, Higgins TL, et al (2009) Prolonged acute mechanical ventilation: implications for hospital benchmarking. Chest 135:1157–62 [CrossRef] [PubMed] [Google Scholar]
  • Tappy L, Chiolero R (2007) Substrate utilization in sepsis and multiple organ failure. Crit Care Med 35:S531–S4 [CrossRef] [PubMed] [Google Scholar]
  • Cahill NE, Dhaliwal R, Day AG, et al (2010) Nutrition therapy in the critical care setting: what is “best achievable” practice? An international multicenter observational study. Crit Care Med 38:395–401 [CrossRef] [PubMed] [Google Scholar]
  • Faisy C, Lerolle N, Dachraoui F, et al (2009) Impact of energy deficit calculated by a predictive method on outcome in medical patients requiring prolonged acute mechanical ventilation. Br J Nutr 101:1079–87 [CrossRef] [PubMed] [Google Scholar]
  • Pichard C, Oshima T, Berger MM (2015) Energy deficit is clinically relevant for critically ill patients: yes. Intensive Care Med 41:335–8 [CrossRef] [PubMed] [Google Scholar]
  • Bengmark S, Gianotti L (1996) Nutritional support to prevent and treat multiple organ failure. World J Surg 20:474–81 [CrossRef] [PubMed] [Google Scholar]
  • Gordon RJ, Lowy FD (2008) Pathogenesis of methicillin-resistant Staphylococcus aureus infection. Clin Infect Dis 46: S350–S9 [CrossRef] [PubMed] [Google Scholar]
  • DeLeo FR, Diep BA, Otto M (2009) Host defense and pathogenesis in Staphylococcus aureus infections. Infect Dis Clin North Am 23:17–34 [CrossRef] [PubMed] [Google Scholar]
  • Chastre J, Fagon JY (2002) Ventilator-associated pneumonia. Am J Respir Crit Care Med 165:867–903 [CrossRef] [PubMed] [Google Scholar]
  • Murray E, Manary M (2015) Possible role of the microbiome in the development of acute malnutrition and implications for food-based strategies to prevent and treat acute malnutrition. Food Nutr Bull 36:S72–S5 [CrossRef] [PubMed] [Google Scholar]
  • Ojima M, Motooka D, Shimizu K, et al (2015) Metagenomic analysis reveals dynamic changes of whole gut microbiota in the acute phase of intensive care unit patients. Dig Dis Sci (doi:0.1007/s10620-015-4011-3) [Google Scholar]
  • Samuelson DR, Welsh DA, Shellito JE (2015) Regulation of lung immunity and host defense by the intestinal microbiota. Front Microbiol 6:1085 [CrossRef] [PubMed] [Google Scholar]
  • Gauguet S, D'Ortona S, Ahnger-Pier K, et al (2015) Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect Immun 83:4003–14 [CrossRef] [PubMed] [Google Scholar]
  • Faisy C, Llerena C, Savalle M, et al (2011) Early ICU energy deficit is a risk factor of ventilator-associated pneumonia by Staphylococcus aureus. Chest 140:1254–60 [CrossRef] [PubMed] [Google Scholar]
  • Ekpe K, Novara A, Mainardi JL, et al (2014) Methicillin-resistant Staphylococcus aureus bloodstream infections are associated with a higher energy deficit than other ICU-acquired bacteremia. Intensive Care Med 40:1878–87 [CrossRef] [PubMed] [Google Scholar]
  • França TG, Ishikawa LL, Zorzella-Pezavento SF, et al (2009) Immunization protected well nourished mice but not undernourished ones from lung injury in methicillin-resistant Staphylococcus aureus (MRSA) infection. BMC Microbiol 9:240 [CrossRef] [PubMed] [Google Scholar]
  • Irazoqui JE, Troemel ER, Feinbaum RL, et al (2010) Distinct pathogenesis and host responses during infection of Caenorhabditis elegans by Pseudomonas aeruginosa and Staphylococcus aureus. PLoS Pathog 6:e1000982 [CrossRef] [PubMed] [Google Scholar]
  • Dauwalder O, Tristan A, Dumitrescu O, et al (2008) Staphylococcus aureus : une panoplie de facteurs de virulence. Association des anciens élèves de l’Institut Pasteur 195:58–64 [Google Scholar]
  • Moreira MR, Cardoso RL, Almeida AB, et al (2008) Risk factors and evolution of ventilator-associated pneumonia by Staphylococcus aureus sensitive or resistant to oxacillin in patients at the intensive care unit of a Brazilian University Hospital. Braz J Infect 12:499–503 [CrossRef] [Google Scholar]
  • Lowy FD (1998) Staphylococcus aureus infections. N Eng J Med 339:520–32 [CrossRef] [Google Scholar]
  • Van Belkum A (2006) Staphylococcal colonization and infection: homeostasis versus disbalance of human (innate) immunity and bacterial virulence. Curr Opin Infect Dis 19:339–44 [CrossRef] [PubMed] [Google Scholar]
  • Somerville GA, Proctor RA (2009) At the crossroads of bacterial metabolism and virulence factor synthesis in Staphylococci. Microbiol Mol Biol Rev 73:233–48 [CrossRef] [PubMed] [Google Scholar]
  • Oztoprak N, Cevik MA, Akinci E, et al (2006) Risk factors for ICU-acquired methicillin-resistant Staphylococcus aureus infections. Am J Infect Control 34:1–5 [CrossRef] [PubMed] [Google Scholar]
  • Seidl K, Müller S, François P, et al (2009) Effect of a glucose impulse on the CcpA regulon in Staphylococcus aureus. BMC Microbiol 9:95 [CrossRef] [PubMed] [Google Scholar]
  • Preiser JC, Ichai C, Orban JC, et al (2014) Metabolic response to the stress of critical illness. Br J Anaesth 113:945–54 [CrossRef] [PubMed] [Google Scholar]
  • Faisy C (2016) Bioenergetics of the stress response. In: Preiser JC (ed) The stress response of critical illness: metabolic and hormonal aspects. Springer, Berlin [Google Scholar]
  • Savalle M, Gillaizeau F, Maruani G, et al (2012) Assessment of body cell mass at bedside in critically ill patients. Am J Physiol Endocrinol Metab 303:389–96 [CrossRef] [Google Scholar]
  • Fiaccadori E, Morabito S, Cabassi A, et al (2014) Body cell mass evaluation in critically ill patients: killing two birds with one stone. Crit Care 18:139 [CrossRef] [PubMed] [Google Scholar]
  • Ismael S, Savalle M, Trivin C, et al (2014) The consequences of sudden fluid shifts on body composition in critically ill patients. Crit Care 18:49 [CrossRef] [Google Scholar]
  • Villet S, Chiolero RL, Bollmann MD, et al (2005) Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr 24:502–9 [CrossRef] [PubMed] [Google Scholar]
  • Petros S, Engelmann L (2006) Enteral nutrition delivery and energy expenditure in medical intensive care patients. Clin Nutr 25:51–9 [CrossRef] [PubMed] [Google Scholar]
  • Doig GS, Simpson F, Finfer S, et al (2008) Effect of evidence-based feeding guidelines on mortality of critically ill adults: a cluster randomized controlled trial. JAMA 300:2731–41 [CrossRef] [PubMed] [Google Scholar]
  • Rubinson L, Diette GB, Song X, et al (2004) Low caloric intake is associated with nosocomial bloodstream infections in patients in the medical intensive care unit. Crit Care Med 32:350–7 [CrossRef] [PubMed] [Google Scholar]
  • Dvir D, Cohen J, Singer P (2006) Computerized energy balance and complications in critically ill patients: an observational study. Clin Nutr 25:37–44 [CrossRef] [PubMed] [Google Scholar]
  • Heyland DK, Stephens KE, Day AG, et al (2011) The success of enteral nutrition and ICU-acquired infections: a multicenter observational study. Clin Nutr 30:148–55 [CrossRef] [PubMed] [Google Scholar]
  • Artinian V, Krayem H, DiGiovine B (2006) Effects of early enteral feeding on the outcome of critically ill mechanically ventilated medical patients. Chest 129:960–7 [CrossRef] [PubMed] [Google Scholar]
  • Taylor SJ, Fettes SB, Jewkes C, et al (1999) Prospective, randomized, controlled trial to determine the effect of early enhanced enteral nutrition on clinical outcome in mechanically ventilated patients suffering head injury. Crit Care Med 27:2525–31 [CrossRef] [PubMed] [Google Scholar]
  • Ibrahim EH, Mehringer L, Prentice D, et al (2002) Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. J Parenter Enteral Nutr 26:174–81 [CrossRef] [PubMed] [Google Scholar]
  • Reignier J, Darmon M, Sonneville R, et al (2015) Impact of early nutrition and feeding route on outcomes of mechanically ventilated patients with shock: a post hoc marginal structural model study. Intensive Care Med 41:875–86 [CrossRef] [PubMed] [Google Scholar]
  • O'Leary-Kelley CM, Puntillo KA, Barr J, et al (2005) Nutritional adequacy in patients receiving mechanical ventilation who are fed enterally. Am J Crit Care 14:222–31 [PubMed] [Google Scholar]
  • Singer P, Anbar R, Cohen J, et al (2011) The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med 37:601–9 [CrossRef] [PubMed] [Google Scholar]
  • Casaer MP, Mesotten D, Hermans G, et al (2011) Early versus late parenteral nutrition in critically ill adults. New Engl J Med 365:506–17 [CrossRef] [PubMed] [Google Scholar]
  • Faisy C, Guerot E, Diehl JL, et al (2003) Assessment of resting energy expenditure in mechanically ventilated patients. Am J Clin Nutr 78:241–9 [CrossRef] [PubMed] [Google Scholar]
  • Savard JF, Faisy C, Lerolle N, et al (2008) Validation of a predictive method for an accurate assessment of resting energy expenditure in medical mechanically ventilated patients. Crit Care Med 36:1175–83 [CrossRef] [PubMed] [Google Scholar]
  • ARDS Clinical Trials Network (2012) Initial trophic vs full enteral feeding in patient with acute lung injury. JAMA 307:795–803 [CrossRef] [PubMed] [Google Scholar]
  • Singer P, Cohen J (2015) Nutrition in the ICU: proof of the pudding is in the tasting. Intensive Care Med 41:154–6 [CrossRef] [PubMed] [Google Scholar]
  • Arabi YM, Tamim HM, Dhar GS, et al (2011) Permissive underfeeding and intensive insulin therapy in critically ill patients: a randomized controlled trial. Am J Clin Nutr 93:569–77 [CrossRef] [PubMed] [Google Scholar]
  • Charles EJ, Petroze RT, Metzger R, et al (2014) Hypocaloric compared with eucaloric nutritional support and its effect on infection rates in a surgical intensive care unit: a randomized controlled trial. Am J Clin Nutr 100:1337–43 [CrossRef] [PubMed] [Google Scholar]
  • Heidegger CP, Berger MM, Graf S, et al (2013) Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomized controlled clinical trial. Lancet 381:385–93 [CrossRef] [PubMed] [Google Scholar]
  • Reid C (2006) Frequency of under- and overfeeding in mechanically ventilated ICU patients: causes and possible consequences. J Hum Nutr Diet 19:13–22 [CrossRef] [PubMed] [Google Scholar]
  • Grau T, Bonet A, Rubio M, et al (2007) Liver dysfunction associated with artificial nutrition in critically ill patients. Crit Care 11:10 [CrossRef] [Google Scholar]
  • Hart DW, Wolf SE, Herndon DN, et al (2002) Energy expenditure and caloric balance after burn: increased feeding leads to fat rather than lean mass accretion. Ann Surg 235:152–61 [CrossRef] [PubMed] [Google Scholar]
  • Krishnan JA, Parce PB, Martinez A, et al (2003) Caloric intake in medical ICU patients: consistency of care with guidelines and relationship to clinical outcomes. Chest 124:297–305 [CrossRef] [PubMed] [Google Scholar]
  • Faisy C, Taylor SJ (2009) Dépense énergétique en réanimation. Réanimation 18:477–85 [CrossRef] [Google Scholar]
  • Faisy C, Rabbat A, Kouchakji B, et al (2000) Bioelectrical impedance analysis in estimating nutritional status and outcome of patients with chronic obstructive pulmonary disease and acute respiratory failure. Intensive Care Med 26:518–25 [CrossRef] [PubMed] [Google Scholar]
  • Lefrant JY, Hurel D, Cano NJ, et al (2014) Recommandations formalisées d’experts. Nutrition artificielle en réanimation. Nutr Clin Metab 28:102–19 [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.