Accès gratuit
Numéro
Réanimation
Volume 25, Numéro 2, Mars 2016
Cardiovasculaire
Page(s) 202 - 211
Section Mise Au Point / Update
DOI https://doi.org/10.1007/s13546-016-1175-6
Publié en ligne 5 février 2016
  • Teboul J, le Groupe d’experts de la SRLF (2004) Recommandations d’experts de la SRLF « Indicateurs du remplissage vasculaire au cours de l’insuffisance circulatoire ». Réanimation 13:255–63 [CrossRef] [Google Scholar]
  • Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345:1368–77 [CrossRef] [PubMed] [Google Scholar]
  • Jansen TC, van Bommel J, Schoonderbeek FJ, et al (2010) Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 182:752–61 [CrossRef] [PubMed] [Google Scholar]
  • Payen D, de Pont CA, Sakr Y, et al (2008) A positive fluid balance is associated with a worse outcome in patients with acute renal failure. Crit Care 12:1–7 [Google Scholar]
  • Pottecher T, Calvat S, Dupont H, et al (2006) Conférence de consensus commune SFAR/SRLF 2005 Prise en charge hémodynamique du sepsis sévère (nouveau-né exclu). Crit Care 10:311 [CrossRef] [PubMed] [Google Scholar]
  • Mion G, Lefrant JY (2004) Risques potentiels du remplissage vasculaire. Réanimation 13:273–8 [CrossRef] [Google Scholar]
  • Maitland K, Kiguli S, Opoka RO, et al (2011) Mortality after fluid bolus in African children with severe infection. N Engl J Med 364:2483–95 [CrossRef] [PubMed] [Google Scholar]
  • Boyd JH, Forbes J, Nakada T, et al (2011) Fluid resuscitation in septic shock: a positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med 39:259–65 [CrossRef] [PubMed] [Google Scholar]
  • Balogh Z, McKinley BA, Cocanour CS, et al (2003) Supranormal trauma resuscitation causes more cases of abdominal compartment syndrome. Arch Surg 138:637–43 [CrossRef] [Google Scholar]
  • Michard F, Teboul JL (2002) Predicting fluid responsiveness in ICU patients: a critical analysis of the evidence. CHEST J 121:2000–8 [Google Scholar]
  • Magder S (2006) Predicting volume responsiveness in spontaneously breathing patients: still a challenging problem. Crit Care 10:1–2 [Google Scholar]
  • Monnet X, Teboul JL (2013) Assessment of volume responsiveness during mechanical ventilation: recent advances. Crit Care Lond Engl 17:217 [Google Scholar]
  • García MIM, Cano AG, Monrové JCD (2009) Brachial artery peak velocity variation to predict fluid responsiveness in mechanically ventilated patients. Crit Care 13:R142 [CrossRef] [PubMed] [Google Scholar]
  • Cannesson M, Desebbe O, Rosamel P, et al (2008) Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 101:200–6 [CrossRef] [PubMed] [Google Scholar]
  • Cannesson M, Attof Y, Rosamel P, et al (2007) Respiratory variations in pulse oximetry plethysmographic waveform amplitude to predict fluid responsiveness in the operating room. Anesthesiology 106:1105–11 [CrossRef] [PubMed] [Google Scholar]
  • Boulain T, Boisrame-Helms J, Ehrmann S, et al (2015) Volume expansion in the first 4 days of shock: a prospective multicentre study in 19 French intensive care units. Intensive Care Med 41:248–56 [CrossRef] [PubMed] [Google Scholar]
  • Cecconi M, Hofer C, Teboul JL, et al (2015) Fluid challenges in intensive care: the FENICE study. Intensive Care Med 41:1529–37 [CrossRef] [PubMed] [Google Scholar]
  • Preau S, Dewavrin F, Demaeght V, et al (2015) The use of static and dynamic haemodynamic parameters before volume expansion: a prospective observational study in six French intensive care units. Anaesth Crit Care Pain Med, http://dx.doi.org/10.1016/j.accpm.2015.08.003 [Google Scholar]
  • Heenen S, Backer DD, Vincent JL (2006) How can the response to volume expansion in patients with spontaneous respiratory movements be predicted? Crit Care 10:R102 [CrossRef] [PubMed] [Google Scholar]
  • Antonelli M, Levy M, Andrews PJD, et al (2007) Hemodynamic monitoring in shock and implications for management. Intensive Care Med 33:575–90 [CrossRef] [PubMed] [Google Scholar]
  • Vincent JL, Weil MH (2006) Fluid challenge revisited. Crit Care Med 34:1333–7 [CrossRef] [PubMed] [Google Scholar]
  • Magder S, Lagonidis D (1999) Effectiveness of albumin versus normal saline as a test of volume responsiveness in post-cardiac surgery patients. J Crit Care 14:164–71 [CrossRef] [PubMed] [Google Scholar]
  • Caille V, Jabot J, Belliard G, et al (2008) Hemodynamic effects of passive leg raising: an echocardiographic study in patients with shock. Intensive Care Med 34:1239–45 [CrossRef] [PubMed] [Google Scholar]
  • Muller L, Toumi M, Bousquet PJ, et al (2011) An increase in aortic blood flow after an infusion of 100 ml colloid over 1 minute can predict fluid responsiveness: the mini-fluid challenge study. Anesthesiology 115:541–7 [CrossRef] [PubMed] [Google Scholar]
  • Wu Y, Zhou S, Zhou Z, Liu B (2014) A 10-second fluid challenge guided by transthoracic echocardiography can predict fluid responsiveness. Crit Care Lond Engl 18:R108 [CrossRef] [Google Scholar]
  • Guinot PG, Bernard E, Defrancq F, et al (2015) Mini-fluid challenge predicts fluid responsiveness during spontaneous breathing under spinal anaesthesia: an observational study. Eur J Anaesthesiol 32:645–9 [CrossRef] [PubMed] [Google Scholar]
  • Boulain T, Achard JM, Teboul JL, et al (2002) Changes in blood pressure induced by passive leg raising predict response to fluid loading in critically ill patients. CHEST J 121:1245–52 [CrossRef] [Google Scholar]
  • Monnet X, Rienzo M, Osman D, et al (2006) Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med 34:1402–7 [CrossRef] [PubMed] [Google Scholar]
  • Maizel J, Airapetian N, Lorne E, et al (2007) Diagnosis of central hypovolemia by using passive leg raising. Intensive Care Med 33:1133–8 [CrossRef] [PubMed] [Google Scholar]
  • Préau S, Saulnier F, Dewavrin F, et al (2010) Passive leg raising is predictive of fluid responsiveness in spontaneously breathing patients with severe sepsis or acute pancreatitis. Crit Care Med 38:819–25 [CrossRef] [PubMed] [Google Scholar]
  • Teboul JL, Monnet X (2008) Prediction of volume responsiveness in critically ill patients with spontaneous breathing activity. Curr Opin Crit Care 14:334–9 [CrossRef] [PubMed] [Google Scholar]
  • Jabot J, Teboul JL, Richard C, Monnet X (2009) Passive leg raising for predicting fluid responsiveness: importance of the postural change. Intensive Care Med 35:85–90 [CrossRef] [PubMed] [Google Scholar]
  • Muller L, Bobbia X, Toumi M, et al (2012) Respiratory variations of inferior vena cava diameter to predict fluid responsiveness in spontaneously breathing patients with acute circulatory failure: need for a cautious use. Crit Care 16:1–7 [Google Scholar]
  • Takata M, Wise RA, Robotham JL (1990) Effects of abdominal pressure on venous return: abdominal vascular zone conditions. J Appl Physiol Bethesda Md (1985) 69:1961–72 [Google Scholar]
  • Charlier AA, Jaumin PM, Pouleur H (1974) Circulatory effects of deep inspirations, blocked expirations and positive pressure inflations at equal transpulmonary pressures in conscious dogs. J Physiol 241:589–605 [CrossRef] [PubMed] [Google Scholar]
  • Magder S (2012) Bench-to-bedside review: an approach to hemodynamic monitoring — Guyton at the bedside. Crit Care Lond Engl 16:236 [CrossRef] [Google Scholar]
  • Scharf SM, Brown R, Saunders N, Green LH (1979) Effects of normal and loaded spontaneous inspiration on cardiovascular function. J Appl Physiol 47:582–90 [PubMed] [Google Scholar]
  • Hakim TS, Michel RP, Chang HK (1982) Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion. J Appl Physiol 53:1110–5 [CrossRef] [PubMed] [Google Scholar]
  • Wexler L, Bergel DH, Gabe IT, et al (1968) Velocity of blood flow in normal human venae cavae. Circ Res 23:349–59 [CrossRef] [PubMed] [Google Scholar]
  • Brecher GA, Hubay CA (1955) Pulmonary blood flow and venous return during spontaneous respiration. Circ Res 3:210–4 [CrossRef] [PubMed] [Google Scholar]
  • Barbieri R, Triedman JK, Saul JP (2002) Heart rate control and mechanical cardiopulmonary coupling to assess central volume: a systems analysis. Am J Physiol Regul Integr Comp Physiol 283:R1210–R20 [CrossRef] [PubMed] [Google Scholar]
  • Takata M, Robotham JL (1992) Effects of inspiratory diaphragmatic descent on inferior vena caval venous return. J Appl Physiol Bethesda Md (1985) 72:597–607 [Google Scholar]
  • Guyton AC, Lindsey AW, Abernathy B, Richardson T (1957) Venous return at various right atrial pressures and the normal venous return curve. Am J Physiol 189:609–15 [PubMed] [Google Scholar]
  • Kuzo RS, Pooley RA, Crook JE, et al (2007) Measurement of caval blood flow with MRI during respiratory maneuvers: implications for vascular contrast opacification on pulmonary CT angiographic studies. AJR Am J Roentgenol 188:839–42 [CrossRef] [PubMed] [Google Scholar]
  • Ruskin J, Bache RJ, Rembert JC, Greenfield JC (1973) Pressure-flow studies in man: effect of respiration on left ventricular stroke volume. Circulation 48:79–85 [CrossRef] [PubMed] [Google Scholar]
  • Buda AJ, Pinsky MR, Ingels NB, et al (1979) Effect of intrathoracic pressure on left ventricular performance. N Engl J Med 301:453–9 [CrossRef] [PubMed] [Google Scholar]
  • Cohn JN, Pinkerson AL, Tristani FE (1967) Mechanism of pulsus paradoxus in clinical shock. J Clin Invest 46:1744–55 [CrossRef] [PubMed] [Google Scholar]
  • Karam M, Wise RA, Natarajan TK, et al (1984) Mechanism of decreased left ventricular stroke volume during inspiration in man. Circulation 69:866–73 [CrossRef] [PubMed] [Google Scholar]
  • Hamzaoui O, Monnet X, Teboul JL (2013) Pulsus paradoxus. Eur Respir J 42:1696–705 [CrossRef] [PubMed] [Google Scholar]
  • Préau S, Dewavrin F, Soland V, et al (2012) Hemodynamic changes during a deep inspiration maneuver predict fluid responsiveness in spontaneously breathing patients. Cardiol Res Pract 2012:191807 [PubMed] [Google Scholar]
  • Rooke GA, Schwid HA, Shapira Y (1995) The effect of graded hemorrhage and intravascular volume replacement on systolic pressure variation in humans during mechanical and spontaneous ventilation. Anesth Analg 80:925–32 [PubMed] [Google Scholar]
  • Delerme S, Renault R, Le Manach Y, et al (2007) Variations in pulse oximetry plethysmographic waveform amplitude induced by passive leg raising in spontaneously breathing volunteers. Am J Emerg Med 25:637–42 [CrossRef] [PubMed] [Google Scholar]
  • Delerme S, Castro S, Freund Y, et al (2010) Relation between pulse oximetry plethysmographic waveform amplitude induced by passive leg raising and cardiac index in spontaneously breathing subjects. Am J Emerg Med 28:505–10 [CrossRef] [PubMed] [Google Scholar]
  • Soubrier S, Saulnier F, Hubert H, et al (2007) Can dynamic indicators help the prediction of fluid responsiveness in spontaneously breathing critically ill patients? Intensive Care Med 33:1117–24 [CrossRef] [PubMed] [Google Scholar]
  • Wise RA, Robotham JL, Summer WR (1981) Effects of spontaneous ventilation on the circulation. Lung 159:175–86 [CrossRef] [PubMed] [Google Scholar]
  • Reuter DA, Bayerlein J, Goepfert MSG, et al (2003) Influence of tidal volume on left ventricular stroke volume variation measured by pulse contour analysis in mechanically ventilated patients. Intensive Care Med 29:476–80 [CrossRef] [PubMed] [Google Scholar]
  • De Backer D, Heenen S, Piagnerelli M, et al (2005) Pulse pressure variations to predict fluid responsiveness: influence of tidal volume. Intensive Care Med 31:517–23 [CrossRef] [PubMed] [Google Scholar]
  • Perel A (2014) Excessive variations in the plethysmographic waveform during spontaneous ventilation: an important sign of upper airway obstruction. Anesth Analg 119:1288–92 [CrossRef] [PubMed] [Google Scholar]
  • Mahjoub Y, Pila C, Friggeri A, et al (2009) Assessing fluid responsiveness in critically ill patients: false-positive pulse pressure variation is detected by doppler-echocardiographic evaluation of the right ventricle. Crit Care Med 37:2570–5 [CrossRef] [PubMed] [Google Scholar]
  • Dahl MK, Vistisen ST, Koefoed-Nielsen J, Larsson A (2009) Using an expiratory resistor, arterial pulse pressure variations predict fluid responsiveness during spontaneous breathing: an experimental porcine study. Crit Care 13:R39 [CrossRef] [PubMed] [Google Scholar]
  • García MIM, Cano AG, Monrové JCD (2009) Arterial pressure changes during the Valsalva maneuver to predict fluid responsiveness in spontaneously breathing patients. Intensive Care Med 35:77–84 [CrossRef] [PubMed] [Google Scholar]
  • Hong DM, Lee JM, Seo JH, et al (2014) Pulse pressure variation to predict fluid responsiveness in spontaneously breathing patients: tidal vs. forced inspiratory breathing. Anaesthesia 69:717–22 [CrossRef] [PubMed] [Google Scholar]
  • Skulec R, Cermak O, Skalicka H, Kolar J (2009) Variability of aortic blood flow predicts fluid responsiveness in spontaneously breathing healthy volunteers. Kardiol Pol 67:265–71 [PubMed] [Google Scholar]
  • Colling D, Bortolotti P, Colas V, et al (2014) Variations respiratoires des vélocités fémorales avec manœuvre respiratoire standardisée comme facteur prédictif de la réponse au remplissage vasculaire chez des patients en ventilation spontanée atteints de SRIS ou sepsis. Ann Fr Anesth Reanim 33:A213 [CrossRef] [Google Scholar]
  • Zöllei yÉ, Bertalan V, Németh A, et al (2013) Non-invasive detection of hypovolemia or fluid responsiveness in spontaneously breathing subjects. BMC Anesthesiol 13:40 [CrossRef] [PubMed] [Google Scholar]
  • Souza Neto EP, Neidecker J, Lehot JJ (2003) Comprendre la variabilité de la pression artérielle et de la fréquence cardiaque. Ann Fr Anesth Reanim 22:425–52 [CrossRef] [PubMed] [Google Scholar]
  • O’Brien IA, O’Hare P, Corrall RJ (1986) Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function. Br Heart J 55:348–54 [CrossRef] [PubMed] [Google Scholar]
  • Garrard CS, Kontoyannis DA, Piepoli M (1993) Spectral analysis of heart rate variability in the sepsis syndrome. Clin Auton Res 3:5–13 [CrossRef] [PubMed] [Google Scholar]
  • Vistisen ST, Juhl-Olsen P, Frederiksen CA, Kirkegaard H (2012) Procedural aspects and physiologic mechanisms of the deep inspiratory maneuver. Cardiol Res Pract 2012:961423 [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.