Accès gratuit
Numéro
Réanimation
Volume 25, Numéro 1, Janvier 2016
Respiratoire
Page(s) 65 - 71
Section Mise Au Point / Update
DOI https://doi.org/10.1007/s13546-015-1147-2
Publié en ligne 4 janvier 2016
  • Sauder P, Andreoletti M, Cambonie G, et al (2008) Conférence de consensus commune (SFAR-SRLF) en réanimation. Sédation-analgésie en réanimation (nouveau-né exclu). Réanimation 17:600–12 [Google Scholar]
  • Jonghe BD, Outin H, Mantz J (2010) Complications de la sédation. In: Analgésie et sédation en réanimation. Springer, Paris, p. 129–39 [CrossRef] [Google Scholar]
  • Fong JJ, Sylvia L, Ruthazer R, et al (2008) Predictors of mortality in patients with suspected propofol infusion syndrome. Crit Care Med 36:2281–7 [CrossRef] [PubMed] [Google Scholar]
  • Girard TD, Kress JP, Fuchs BD, et al (2008) Efficacy and safety of a paired sedation and ventilator weaning protocol for mechanically ventilated patients in intensive care (Awakening and Breathing Controlled trial): a randomised controlled trial. Lancet 371:126–34 [CrossRef] [PubMed] [Google Scholar]
  • Wahba RW (1991) Perioperative functional residual capacity. Can J Anaesth J Can Anesth 38:384–400 [CrossRef] [Google Scholar]
  • D’Angelo E, Pecchiari M, Baraggia P, et al (2002) Low-volume ventilation causes peripheral airway injury and increased airway resistance in normal rabbits. J Appl Physiol 92:949–56 [CrossRef] [PubMed] [Google Scholar]
  • Levine S, Nguyen T, Taylor N, et al (2008) Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med 358:1327–35 [CrossRef] [PubMed] [Google Scholar]
  • Jaber S, Petrof BJ, Jung B, et al (2011) Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans. Am J Respir Crit Care Med 183:364–71 [CrossRef] [PubMed] [Google Scholar]
  • Jung B, Constantin JM, Rossel N, et al (2010) Adaptive support ventilation prevents ventilator-induced diaphragmatic dysfunction in piglet: an in vivo and in vitro study. Anesthesiology 112:1435–43 [CrossRef] [PubMed] [Google Scholar]
  • Futier E, Constantin JM, Combaret L, et al (2008) Pressure support ventilation attenuates ventilator-induced protein modifications in the diaphragm. Crit Care Lond Engl 12:R116 [CrossRef] [Google Scholar]
  • Jung B, Nougaret S, Conseil M, et al (2014) Sepsis is associated with a preferential diaphragmatic atrophy: a critically ill patient study using tridimensional computed tomography. Anesthesiology 120:1182–91 [CrossRef] [PubMed] [Google Scholar]
  • Bradley BD, Green G, Ramsay T, Seely AJ (2013) Impact of sedation and organ failure on continuous heart and respiratory rate variability monitoring in critically ill patients: a pilot study. Crit Care Med 41:433–44 [CrossRef] [PubMed] [Google Scholar]
  • Gutierrez G, Das A, Ballarino G, et al (2013) Decreased respiratory rate variability during mechanical ventilation is associated with increased mortality. Intensive Care Med 39:1359–67 [CrossRef] [PubMed] [Google Scholar]
  • Kahn JM, Andersson L, Karir V, et al (2005) Low tidal volume ventilation does not increase sedation use in patients with acute lung injury. Crit Care Med 33:766–71 [CrossRef] [PubMed] [Google Scholar]
  • Sassoon CSH, Zhu E, Caiozzo VJ (2004) Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med 170:626–32 [CrossRef] [PubMed] [Google Scholar]
  • Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J (1999) Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 159:1241–8 [CrossRef] [PubMed] [Google Scholar]
  • Abreu MG de, Rocco PR, Pelosi P (2011) Pros and Cons of Assisted Mechanical Ventilation in Acute Lung Injury. In: Vincent PJ-L, éditeur. Annual Update in Intensive Care and Emergency Medicine Springer Berlin Heidelberg p. 159–73 [Google Scholar]
  • Yoshida T, Rinka H, Kaji A, et al (2009) The impact of spontaneous ventilation on distribution of lung aeration in patients with acute respiratory distress syndrome: airway pressure release ventilation versus pressure support ventilation. Anesth Analg 109:1892–900 [CrossRef] [PubMed] [Google Scholar]
  • Hering R, Peters D, Zinserling J, et al (2002) Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury. Intensive Care Med 28:1426–33 [CrossRef] [PubMed] [Google Scholar]
  • Yoshida T, Uchiyama A, Matsuura N, et al (2012) Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury. Crit Care Med 40:1578–85 [CrossRef] [PubMed] [Google Scholar]
  • Yoshida T, Uchiyama A, Matsuura N, et al (2013) The comparison of spontaneous breathing and muscle paralysis in two different severities of experimental lung injury. Crit Care Med 41:536–45 [CrossRef] [PubMed] [Google Scholar]
  • Güldner A, Braune A, Carvalho N, et al (2014) Higher levels of spontaneous breathing induce lung recruitment and reduce global stress/strain in experimental lung injury. Anesthesiology 120:673–82 [CrossRef] [PubMed] [Google Scholar]
  • Constantin JM, Schneider E, Cayot-Constantin S, et al (2007) Remifentanil-based sedation to treat noninvasive ventilation failure: a preliminary study. Intensive Care Med 33:82–7 [CrossRef] [PubMed] [Google Scholar]
  • Rocco M, Conti G, Alessandri E, et al (2010) Rescue treatment for noninvasive ventilation failure due to interface intolerance with remifentanil analgosedation: a pilot study. Intensive Care Med 36:2060–5 [CrossRef] [PubMed] [Google Scholar]
  • Clouzeau B, Bui HN, Vargas F, et al (2010) Target-controlled infusion of propofol for sedation in patients with non-invasive ventilation failure due to low tolerance: a preliminary study. Intensive Care Med 36:1675–80 [CrossRef] [PubMed] [Google Scholar]
  • Matsumoto T, Tomii K, Tachikawa R, et al (2015) Role of sedation for agitated patients undergoing noninvasive ventilation: clinical practice in a tertiary referral hospital. BMC Pulm Med 15:71 [CrossRef] [Google Scholar]
  • Cereda M, Foti G, Marcora B, et al (2000) Pressure support ventilation in patients with acute lung injury. Crit Care Med 28:1269–75 [CrossRef] [PubMed] [Google Scholar]
  • Kress JP, Pohlman AS, O’Connor MF, Hall JB (2000) Daily interruption of sedative infusions in critically ill patients undergoing mechanical ventilation. N Engl J Med 342:1471–7 [CrossRef] [PubMed] [Google Scholar]
  • Schweickert WD, Pohlman MC, Pohlman AS, et al (2009) Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial1. The Lancet 373:1874–82 [CrossRef] [PubMed] [Google Scholar]
  • De Jonghe B, Bastuji-Garin S, Fangio P, et al (2005) Sedation algorithm in critically ill patients without acute brain injury. Crit Care Med 33:120–7 [CrossRef] [PubMed] [Google Scholar]
  • Quenot JP, Ladoire S, Devoucoux F, et al (2007) Effect of a nurse-implemented sedation protocol on the incidence of ventilator-associated pneumonia. Crit Care Med 35:2031–6 [CrossRef] [PubMed] [Google Scholar]
  • Jakob SM, Ruokonen E, Grounds RM, et al (2012) Dexmedetomidine vs midazolam or propofol for sedation during prolonged mechanical ventilation: two randomized controlled trials. JAMA 307:1151–60 [CrossRef] [PubMed] [Google Scholar]
  • Strøm T, Martinussen T, Toft P (2010) A protocol of no sedation for critically ill patients receiving mechanical ventilation: a randomised trial. Lancet Lond Engl 375:475–80 [CrossRef] [Google Scholar]
  • Brochard L (2010) Less sedation in intensive care: the pendulum swings back. The Lancet 375:436–8 [CrossRef] [Google Scholar]
  • Papazian L, Forel JM, Gacouin A, et al (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363:1107–16 [CrossRef] [PubMed] [Google Scholar]
  • Guérin C, Reignier J, Richard JC, et al (2013) Prone positioning in severe acute respiratory distress syndrome. N Engl J Med 368:2159–68 [CrossRef] [PubMed] [Google Scholar]
  • Shekar K, Roberts JA, Mcdonald CI, et al (2015) Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: results from an ex vivo study. Crit Care 19:164 [Google Scholar]
  • Lemaitre F, Hasni N, Leprince P, et al (2015) Propofol, midazolam, vancomycin and cyclosporine therapeutic drug monitoring in extracorporeal membrane oxygenation circuits primed with whole human blood. Crit Care 19:40 [CrossRef] [PubMed] [Google Scholar]
  • Tellor B, Shin N, Graetz TJ, Avidan MS (2015) Ketamine infusion for patients receiving extracorporeal membrane oxygenation support: a case series. F1000Res (in press) [Google Scholar]
  • Mohite P, Sabashnikov A, Reed A, et al (2015) Extracorporeal Life Support in « Awake » Patients as a Bridge to Lung Transplant. Thorac Cardiovasc Surg (in press) [Google Scholar]
  • Doorduin J, Sinderby CA, Beck J, et al (2015) Assisted Ventilation in Patients with Acute Respiratory Distress Syndrome: Lung-distending Pressure and Patient-Ventilator Interaction. Anesthesiology (in press) [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.