Accès gratuit
Numéro
Réanimation
Volume 24, Numéro 5, Septembre 2015
Neurologie-urgences
Page(s) 498 - 508
Section Mise Au Point / Update
DOI https://doi.org/10.1007/s13546-015-1099-6
Publié en ligne 27 juillet 2015
  • Sharshar T, Citerio G, Andrews PJD, et al (2014) Neurological examination of critically ill patients: a pragmatic approach. Report of an ESICM expert panel. Intensive Care Med 40:484–95 [CrossRef] [PubMed] [Google Scholar]
  • Bratton SL, Chestnut RM, Ghajar J, et al (2007) VI. Indications for Intracranial pressure monitoring. J Neurotrauma 24:S37–S44 [PubMed] [Google Scholar]
  • Stocchetti N, Picetti E, Berardino M, et al (2014) Clinical applications of intracranial pressure monitoring in traumatic brain injury: report of the Milan consensus conference. Acta Neurochir (Wien) 156:1615–22 [CrossRef] [PubMed] [Google Scholar]
  • Helbok R, Olson DM, Le Roux PD, et al (2014) Intracranial pressure and cerebral perfusion pressure monitoring in non-TBI patients: special considerations. Neurocrit Care 21:85–94 [CrossRef] [PubMed] [Google Scholar]
  • Raboel PH, Bartek J, Andresen M, et al (2012) Intracranial pressure monitoring: invasive versus non-invasive methods: a review. Crit Care Res Pract 2012:1–14 [CrossRef] [Google Scholar]
  • Al-Tamimi YZ, Helmy A, Bavetta S, Price SJ (2009) Assessment of zero drift in the CODMAN intracranial pressure monitor: a study from 2 neurointensive care units. Neurosurgery 64:94–9 [CrossRef] [PubMed] [Google Scholar]
  • Bratton SL, Chestnut RM, Ghajar J, et al (2007) VIII. Intracranial pressure thresholds. J Neurotrauma 24:S55–S8 [PubMed] [Google Scholar]
  • Bratton SL, Chestnut RM, Ghajar J, et al (2007) IX. Cerebral perfusion thresholds. J Neurotrauma 24:S59–S64 [PubMed] [Google Scholar]
  • Robertson CS, Valadka AB, Hannay HJ, et al (1999) Prevention of secondary ischemic insults after severe head injury. Crit Care Med 27:2086–95 [CrossRef] [PubMed] [Google Scholar]
  • Hawthorne C, Piper I (2014) Monitoring of intracranial pressure in patients with traumatic brain injury. Front Neurol 5:121 [CrossRef] [PubMed] [Google Scholar]
  • Howells T, Lewén A, Sköld MK, et al (2012) An evaluation of three measures of intracranial compliance in traumatic brain injury patients. Intensive Care Med 38:1061–8 [CrossRef] [PubMed] [Google Scholar]
  • Czosnyka M, Citerio G (2012) Brain compliance: the old story with a new “et cetera”. Intensive Care Med 38:925–7 [CrossRef] [PubMed] [Google Scholar]
  • Treggiari MM, Schutz N, Yanez ND, Romand JA (2007) Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care 6:104–12 [CrossRef] [PubMed] [Google Scholar]
  • Lane PL, Skoretz TG, Doig G, Girotti MJ (2000) Intracranial pressure monitoring and outcomes after traumatic brain injury. Can J Surg J Can Chir 43:442–8 [Google Scholar]
  • Shafi S, Diaz-Arrastia R, Madden C, Gentilello L (2008) Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma Inj Infect Crit Care 64:335–40 [CrossRef] [Google Scholar]
  • Chesnut RM, Temkin N, Carney N, et al (2012) A trial of intracranial-pressure monitoring in traumatic brain injury. N Engl J Med 367:2471–81 [CrossRef] [PubMed] [Google Scholar]
  • Su S-H, Wang F, Hai J, et al (2014) The effects of intracranial pressure monitoring in patients with traumatic brain injury. PLoS ONE 9:e87432 [CrossRef] [PubMed] [Google Scholar]
  • Belli A, Sen J, Petzold A, et al (2008) Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien) 150:461–70 [CrossRef] [PubMed] [Google Scholar]
  • Bouzat P, Marques-Vidal P, Zerlauth JB, et al (2015) Accuracy of brain multimodal monitoring to detect cerebral hypoperfusion after traumatic brain injury*. Crit Care Med 43:445–52 [CrossRef] [PubMed] [Google Scholar]
  • Chen HI, Stiefel MF, Oddo M, et al (2011) Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery 69:53–63 [CrossRef] [PubMed] [Google Scholar]
  • Rosenberg JB, Shiloh AL, Savel RH, Eisen LA (2011) Non-invasive methods of estimating intracranial pressure. Neurocrit Care 15:599–608 [CrossRef] [PubMed] [Google Scholar]
  • Schmidt EA, Czosnyka M, Gooskens I, et al (2001) Preliminary experience of the estimation of cerebral perfusion pressure using transcranial doppler ultrasonography. J Neurol Neurosurg Psychiatry 70:198–204 [CrossRef] [PubMed] [Google Scholar]
  • Bellner J, Romner B, Reinstrup P, et al (2004) Transcranial doppler sonography pulsatility index (PI) reflects intracranial pressure (ICP). Surg Neurol 62:45–51 [CrossRef] [PubMed] [Google Scholar]
  • Ract C, Le Moigno S, Bruder N, Vigué B (2007) Transcranial doppler ultrasound goal-directed therapy for the early management of severe traumatic brain injury. Intensive Care Med 33:645–51 [CrossRef] [PubMed] [Google Scholar]
  • Bouzat P, Francony G, Declety P, et al (2011) Transcranial doppler to screen on admission patients with mild to moderate traumatic brain injury. Neurosurgery 68:1603–10 [CrossRef] [PubMed] [Google Scholar]
  • Bäuerle J, Schuchardt F, Schroeder L, et al (2013) Reproducibility and accuracy of optic nerve sheath diameter assessment using ultrasound compared to magnetic resonance imaging. BMC Neurol 13:187 [CrossRef] [PubMed] [Google Scholar]
  • Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL (2011) Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care 15:506–15 [CrossRef] [PubMed] [Google Scholar]
  • Dubourg J, Javouhey E, Geeraerts T, et al (2011) Ultrasonography of optic nerve sheath diameter for detection of raised intracranial pressure: a systematic review and meta-analysis. Intensive Care Med 37:1059–68 [CrossRef] [PubMed] [Google Scholar]
  • Dubourg J, Messerer M, Karakitsos D, et al (2013) Individual patient data systematic review and meta-analysis of optic nerve sheath diameter ultrasonography for detecting raised intracranial pressure: protocol of the ONSD research group. Syst Rev 2:62 [CrossRef] [PubMed] [Google Scholar]
  • Le Roux P, Menon DK, Citerio G, et al (2014) The international multidisciplinary consensus conference on multimodality monitoring in neurocritical care: a list of recommendations and additional conclusions: a statement for healthcare professionals from the neurocritical care society and the european society of intensive care medicine. Neurocrit Care 21:282–96 [CrossRef] [Google Scholar]
  • Schell RM, Cole DJ (2000) Cerebral monitoring: jugular venous oximetry. Anesth Analg 90:559–66 [CrossRef] [PubMed] [Google Scholar]
  • Joly LM, Mertes PM (2006) Intérêt du monitorage de l’oxygénation cérébrale par SvjO2 ou PtiO2. Ann Fr Anesth Reanim 25:748–54 [CrossRef] [PubMed] [Google Scholar]
  • Oddo M, Bösel J, The Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring (2014) Monitoring of brain and systemic oxygenation in neurocritical care patients. Neurocrit Care 21:103–20 [CrossRef] [Google Scholar]
  • Ponce LL, Pillai S, Cruz J, et al (2012) Position of probe determines prognostic information of brain tissue PO2 in severe traumatic brain injury. Neurosurgery 70:1492–503 [CrossRef] [PubMed] [Google Scholar]
  • Andrews PJD, Citerio G, Longhi L, et al (2008) NICEM consensus on neurological monitoring in acute neurological disease. Intensive Care Med 34:1362–1370 [CrossRef] [PubMed] [Google Scholar]
  • Maloney-Wilensky E, Gracias V, Itkin A, et al (2009) Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med 37:2057–63 [CrossRef] [PubMed] [Google Scholar]
  • Bratton SL, Chestnut RM, Ghajar J, et al (2007) X. Brain oxygen monitoring and thresholds. J Neurotrauma 24:S65–S70 [PubMed] [Google Scholar]
  • Harutyunyan G, Mangoyan H, Mkhoyan G (2014) Brain tissue oxygen reactivity: clinical implications and pathophysiology. Front Pharmacol 5:100 [CrossRef] [PubMed] [Google Scholar]
  • Oddo M, Levine JM, Mackenzie L, et al (2011) Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independent of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery 69:1037–45 [PubMed] [Google Scholar]
  • Nangunoori R, Maloney-Wilensky E, Stiefel M, et al (2012) Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: a systematic literature review. Neurocrit Care 17:131–8 [CrossRef] [PubMed] [Google Scholar]
  • Green JA, Pellegrini DC, Vanderkolk WE, et al (2013) Goal directed brain tissue oxygen monitoring versus conventional management in traumatic brain injury: an analysis of in hospital recovery. Neurocrit Care 18:20–5 [CrossRef] [PubMed] [Google Scholar]
  • Ghosh A, Elwell C, Smith M (2012) Review article: cerebral near-infrared spectroscopy in adults: a work in progress. Anesth Analg 115:1373–83 [CrossRef] [PubMed] [Google Scholar]
  • Kirkman MA, Smith M (2014) Intracranial pressure monitoring, cerebral perfusion pressure estimation, and ICP/CPP-guided therapy: a standard of care or optional extra after brain injury? Br J Anaesth 112:35–46 [CrossRef] [PubMed] [Google Scholar]
  • Taussky P, O’Neal B, Daugherty WP, et al (2012) Validation of frontal near-infrared spectroscopy as noninvasive bedside monitoring for regional cerebral blood flow in brain-injured patients. Neurosurg Focus 32:E2 [CrossRef] [Google Scholar]
  • Leal-Noval SR, Cayuela A, Arellano-Orden V, et al (2010) Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury. Intensive Care Med 36:1309–17 [CrossRef] [PubMed] [Google Scholar]
  • Kim MB, Ward DS, Cartwright CR, et al (2000) Estimation of jugular venous O2 saturation from cerebral oximetry or arterial O2 saturation during isocapnic hypoxia. J Clin Monit Comput 16:191–9 [CrossRef] [PubMed] [Google Scholar]
  • Ter Minassian A, Poirier N, Pierrot M, et al (1999) Correlation between cerebral oxygen saturation measured by near-infrared spectroscopy and jugular oxygen saturation in patients with severe closed head injury. Anesthesiology 91:985–90 [CrossRef] [PubMed] [Google Scholar]
  • Salonia R, Bell MJ, Kochanek PM, Berger RP (2012) The utility of near infrared spectroscopy in detecting intracranial hemorrhage in children. J Neurotrauma 29:1047–53 [CrossRef] [PubMed] [Google Scholar]
  • Damian MS, Schlosser R (2007) Bilateral near infrared spectroscopy in space-occupying middle cerebral artery stroke. Neurocrit Care 6:165–73 [CrossRef] [PubMed] [Google Scholar]
  • Mutoh T, Kobayashi S, Tamakawa N, Ishikawa T (2011) Multichannel near-infrared spectroscopy as a tool for assisting intra-arterial fasudil therapy for diffuse vasospasm after subarachnoid hemorrhage. Surg Neurol Int 2:68 [CrossRef] [PubMed] [Google Scholar]
  • Ritzenthaler T, Cho TH, Luis D, et al (2015) Usefulness of near-infrared spectroscopy in thrombectomy monitoring. J Clin Monit Comput (in press) [Google Scholar]
  • Bruder NJ, Velly LJ (2015) Near-infrared spectroscopy for monitoring brain oxygenation: to trust or not to trust? Minerva Anestesiol (in press) [Google Scholar]
  • Miller C, Armonda R, The Participants in the International Multi-disciplinary Consensus Conference on Multimodality Monitoring (2014) Monitoring of cerebral blood flow and ischemia in the critically ill. Neurocrit Care 21:121–8 [CrossRef] [Google Scholar]
  • Naqvi J, Yap KH, Ahmad G, Ghosh J (2013) Transcranial doppler ultrasound: a review of the physical principles and major applications in critical care. Int J Vasc Med 2013:629378 [PubMed] [Google Scholar]
  • Washington CW, Zipfel GJ, The Participants in the International Multi-disciplinary Consensus Conference on the Critical Care Management of Subarachnoid Hemorrhage (2011) Detection and monitoring of vasospasm and delayed cerebral ischemia: a review and assessment of the literature. Neurocrit Care 15:312–7 [CrossRef] [PubMed] [Google Scholar]
  • Rosenthal G, Sanchez-Mejia RO, Phan N, et al (2011) Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg 114:62–70 [CrossRef] [PubMed] [Google Scholar]
  • Vajkoczy P, Horn P, Thome C, et al (2003) Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg 98:1227–34 [CrossRef] [PubMed] [Google Scholar]
  • Wolf S, Vajkoczy P, Dengler J, et al (2012) Drift of the Bowman Hemedex® cerebral blood flow monitor between calibration cycles. Acta Neurochir Suppl 114:187–90 [CrossRef] [PubMed] [Google Scholar]
  • Radolovich DK, Czosnyka M, Timofeev I, et al (2009) Reactivity of brain tissue oxygen to change in cerebral perfusion pressure in head injured patients. Neurocrit Care 10:274–9 [CrossRef] [PubMed] [Google Scholar]
  • Budohoski KP, Czosnyka M, Smielewski P, et al (2012) Impairment of cerebral autoregulation predicts delayed cerebral ischemia after subarachnoid hemorrhage: a prospective observational study. Stroke 43:3230–7 [CrossRef] [PubMed] [Google Scholar]
  • Czosnyka M, Smielewski P, Kirkpatrick P, et al (1996) Monitoring of cerebral autoregulation in head-injured patients. Stroke J Cereb Circ 27:1829–34 [CrossRef] [Google Scholar]
  • Steiner LA, Czosnyka M, Piechnik SK, et al (2002) Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med 30:733–8 [CrossRef] [PubMed] [Google Scholar]
  • Jaeger M, Dengl M, Meixensberger J, Schuhmann MU (2010) Effects of cerebrovascular pressure reactivity-guided optimization of cerebral perfusion pressure on brain tissue oxygenation after traumatic brain injury. Crit Care Med 38:1343–7 [CrossRef] [PubMed] [Google Scholar]
  • Aries MJH, Czosnyka M, Budohoski KP, et al (2012) Continuous monitoring of cerebrovascular reactivity using pulse waveform of intracranial pressure. Neurocrit Care 17:67–76 [CrossRef] [PubMed] [Google Scholar]
  • Sorrentino E, Budohoski KP, Kasprowicz M, et al (2011) Critical thresholds for transcranial doppler indices of cerebral autoregulation in traumatic brain injury. Neurocrit Care 14:188–93 [CrossRef] [PubMed] [Google Scholar]
  • Bellander B-M, Cantais E, Enblad P, et al (2004) Consensus meeting on microdialysis in neurointensive care. Intensive Care Med 30:2166–9 [CrossRef] [PubMed] [Google Scholar]
  • De Lima Oliveira M, Kairalla AC, Fonoff ET, et al (2013) Cerebral microdialysis in traumatic brain injury and subarachnoid hemorrhage: state of the art. Neurocrit Care 21:152–62 [Google Scholar]
  • Hutchinson P, O’Phelan K, The Participants in the International Multidisciplinary Consensus Conference on Multimodality Monitoring (2014) International multidisciplinary consensus conference on multimodality monitoring: cerebral metabolism. Neurocrit Care 21:148–58 [CrossRef] [Google Scholar]
  • Dizdarevic K, Hamdan A, Omerhodzic I, Kominlija-Smajic E (2012) Modified Lund concept versus cerebral perfusion pressure-targeted therapy: a randomised controlled study in patients with secondary brain ischaemia. Clin Neurol Neurosurg 114:142–8 [CrossRef] [PubMed] [Google Scholar]
  • André-Obadia N, Lamblin MD, Sauleau P (2015) French recommendations on electroencephalography. Neurophysiol Clin Clin Neurophysiol 45:1–17 [CrossRef] [Google Scholar]
  • Stewart CP, Otsubo H, Ochi A, et al (2010) Seizure identification in the ICU using quantitative EEG displays. Neurology 75:1501–8 [CrossRef] [PubMed] [Google Scholar]
  • Young GB, Jordan KG, Doig GS (1996) An assessment of nonconvulsive seizures in the intensive care unit using continuous EEG monitoring: an investigation of variables associated with mortality. Neurology 47:83–9 [CrossRef] [PubMed] [Google Scholar]
  • Vespa PM, O’Phelan K, Shah M, et al (2003) Acute seizures after intracerebral hemorrhage: a factor in progressive midline shift and outcome. Neurology 60:1441–6 [CrossRef] [PubMed] [Google Scholar]
  • Vespa PM, Miller C, McArthur D, et al (2007) Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med 35:2830–6 [CrossRef] [PubMed] [Google Scholar]
  • Claassen J, Mayer SA, Kowalski RG, et al (2004) Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology 62:1743–8 [CrossRef] [PubMed] [Google Scholar]
  • Shafi MM, Westover MB, Cole AJ, et al (2012) Absence of early epileptiform abnormalities predicts lack of seizures on continuous EEG. Neurology 79:1796–801 [CrossRef] [PubMed] [Google Scholar]
  • Claassen J, Taccone FS, Horn P, et al (2013) Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med 39:1337–51 [CrossRef] [PubMed] [Google Scholar]
  • Vespa PM, Nuwer MR, Juhász C, et al (1997) Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol 103:607–15 [CrossRef] [PubMed] [Google Scholar]
  • Hebb MO, McArthur DL, Alger J, et al (2007) Impaired percent alpha variability on continuous electroencephalography is associated with thalamic injury and predicts poor long-term outcome after human traumatic brain injury. J Neurotrauma 24:579–90 [CrossRef] [PubMed] [Google Scholar]
  • Navarro V, Fischer C, Convers P (2009) Differential diagnosis of status epilepticus. Rev Neurol (Paris) 165:321–7 [CrossRef] [PubMed] [Google Scholar]
  • Mani R, Schmitt SE, Mazer M, et al (2012) The frequency and timing of epileptiform activity on continuous electroencephalogram in comatose post-cardiac arrest syndrome patients treated with therapeutic hypothermia. Resuscitation 83:840–7 [CrossRef] [PubMed] [Google Scholar]
  • Dalmau J, Lancaster E, Martinez-Hernandez E, et al (2011) Clinical experience and laboratory investigations in patients with anti-NMDAR encephalitis. Lancet Neurol 10:63–74 [CrossRef] [PubMed] [Google Scholar]
  • Bayreuther C, Bourg V, Dellamonica J, et al (2009) Complex partial status epilepticus revealing anti-NMDA receptor encephalitis. Epileptic Disord Int Epilepsy J Videotape 11:261–65 [Google Scholar]
  • Gitiaux C, Simonnet H, Eisermann M, et al (2013) Early electro-clinical features may contribute to diagnosis of the anti-NMDA receptor encephalitis in children. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 124:2354–61 [CrossRef] [Google Scholar]
  • Da Silva-Júnior FP, Castro LHM, Andrade JQ, et al (2014) Serial and prolonged EEG monitoring in anti-N-Methyl-d-Aspartate receptor encephalitis. Clin Neurophysiol Off J Int Fed Clin Neurophysiol 125:1541–4 [CrossRef] [Google Scholar]
  • Guérit, JM, Mauguiere, F, Plouin, P (2002) Guide pratique de neurophysiologie clinique, éditions scientifiques et médicales. Elsevier [Google Scholar]
  • Amantini A, Fossi S, Grippo A, et al (2009) Continuous EEG-SEP monitoring in severe brain injury. Neurophysiol Clin Clin Neurophysiol 39:85–93 [CrossRef] [Google Scholar]
  • Billard V, Constant I (2001) Automatic analysis of electroencephalogram: what is its value in the year 2000 for monitoring anesthesia depth? Ann Fr Anesth Rea 20:763–85 [CrossRef] [Google Scholar]
  • De Wit M, Epstein SK (2003) Administration of sedatives and level of sedation: comparative evaluation via the Sedation-Agitation Scale and the Bispectral Index. Am J Crit Care Off Publ Am Assoc Crit Care Nurses 12:343–8 [Google Scholar]
  • Frenzel D, Greim CA, Sommer C, et al (2002) Is the bispectral index appropriate for monitoring the sedation level of mechanically ventilated surgical ICU patients? Intensive Care Med 28:178–83 [CrossRef] [PubMed] [Google Scholar]
  • Nasraway SA SA, Wu EC, Kelleher RM, et al (2002) How reliable is the Bispectral Index in critically ill patients? A prospective, comparative, single-blinded observer study. Crit Care Med 30:1483–7 [CrossRef] [PubMed] [Google Scholar]
  • Simmons LE, Riker RR, Prato BS, Fraser GL (1999) Assessing sedation during intensive care unit mechanical ventilation with the Bispectral Index and the Sedation-Agitation Scale. Crit Care Med 27:1499–504 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.