Accès gratuit
Volume 24, Numéro 3, Mai 2015
Page(s) 318 - 327
Section Mise Au Point / Update
Publié en ligne 2 avril 2015
  • Wisplinghoff H, Bischoff T, Tallent SM, et al (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24, 179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317 [CrossRef] [PubMed] [Google Scholar]
  • Martin GS1, Mannino DM, Eaton S, Moss M, (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554 [CrossRef] [PubMed] [Google Scholar]
  • Vincent JL, Rello J, Marshall J, et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329 [CrossRef] [PubMed] [Google Scholar]
  • Gudlaugsson O, Gillespie S, Lee K, et al (2003) Attributable mortality of nosocomial candidemia, revisited. Clin Infect Dis 37:1172–1177 [CrossRef] [PubMed] [Google Scholar]
  • Wey SB, Mori M, Pfaller MA, et al (1988) Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Intern Med 148:2642–2645 [CrossRef] [PubMed] [Google Scholar]
  • Pittet D, Li N, Woolson RF, Wenzel RP (1997) Microbiological factors influencing the outcome of nosocomial bloodstream infections: a 6-year validated, population-based model. Clin Infect Dis 24:1068–1078 [CrossRef] [PubMed] [Google Scholar]
  • Rentz AM, Halpern MT, Bowden R (1998) The impact of candidemia on length of hospital stay, outcome, and overall cost of illness. Clin Infect Dis 27:781–788 [CrossRef] [PubMed] [Google Scholar]
  • Kett DH, Azoulay E, Echeverria PM, et al (2011) Candida bloodstream infections in intensive care units: analysis of the extended prevalence of infection in intensive care unit study. Crit Care Med 39:665–670 [CrossRef] [PubMed] [Google Scholar]
  • Blot SI, Vandewoude KH, Hoste EA, Colardyn FA (2002) Effects of nosocomial candidemia on outcomes of critically ill patients. Am J Med 113:480–485 [CrossRef] [PubMed] [Google Scholar]
  • Lortholary O, Renaudat C, Sitbon K, et al (2014) Worrisome trends in incidence and mortality of candidemia in intensive care units (Paris area, 2002–2010). Intensive Care Med 40:1303–1312 [CrossRef] [PubMed] [Google Scholar]
  • Reagan DR, Pfaller MA, Hollis RJ, Wenzel RP (1990) Characterization of the sequence of colonization and nosocomial candidemia using DNA fingerprinting and a DNA probe. J Clin Microbiol 28:2733–2738 [PubMed] [Google Scholar]
  • Filler SG, Sheppard DC (2006) Fungal invasion of normally nonphagocytic host cells. PLoS Pathog 2:e129 [CrossRef] [PubMed] [Google Scholar]
  • de Repentigny L, Aumont F, Bernard K, Belhumeur P (2000) Characterization of binding of Candida albicans to small intestinal mucin and its role in adherence to mucosal epithelial cells. Infect Immun 68:3172–3179 [CrossRef] [PubMed] [Google Scholar]
  • Naglik JR, Challacombe SJ, Hube B (2003) Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 67:400–428 [CrossRef] [PubMed] [Google Scholar]
  • Poissy J, Parmentier-Decrucq E, Sendid B, et al (2014) Nouveaux marqueurs pour le diagnostic de la maladie fongique invasive. Réanimation 23:298–308 [CrossRef] [Google Scholar]
  • Klis FM, de Groot P, Hellingwerf K (2001) Molecular organization of the cell wall of Candida albicans. Med Mycol 39(Suppl 1), 1–8 [CrossRef] [Google Scholar]
  • Tronchin G, Pihet M, Lopes-Bezerra LM, Bouchara JP (2008) Adherence mechanisms in human pathogenic fungi. Med Mycol 46:749–772 [CrossRef] [PubMed] [Google Scholar]
  • Kanbe T, Han Y, Redgrave B, et al (1993) Evidence that mannans of Candida albicans are responsible for adherence of yeast forms to spleen and lymph node tissue. Infect Immun 61:2578–2584 [PubMed] [Google Scholar]
  • Kanbe T, Cutler JE (1998) Minimum chemical requirements for adhesin activity of the acid-stable part of Candida albicans cell wall phosphomannoprotein complex. Infect Immun 66:5812–5818 [PubMed] [Google Scholar]
  • Dalle F, Jouault T, Trinel PA, et al (2003) Beta-1, 2-and alpha-1, 2-linked oligomannosides mediate adherence of Candida albicans blastospores to human enterocytes in vitro. Infect Immun 71:7061–7068 [CrossRef] [PubMed] [Google Scholar]
  • Dromer F, Chevalier R, Sendid B, et al (2002) Synthetic analogues of beta-1, 2 oligomannosides prevent intestinal colonization by the pathogenic yeast Candida albicans. Antimicrob Agents Chemother 46:3869–3876 [CrossRef] [PubMed] [Google Scholar]
  • Timpel C, Zink S, Strahl-Bolsinger S, et al (2000) Morphogenesis, adhesive properties, and antifungal resistance depend on the Pmt6 protein mannosyltransferase in the fungal pathogen candida albicans. J Bacteriol 182:3063–3071 [CrossRef] [PubMed] [Google Scholar]
  • Munro CA, Bates S, Buurman ET, et al (2005) Mnt1p and Mnt2p of Candida albicans are partially redundant alpha1, 2-mannosyltransferases that participate in O-linked mannosylation and are required for adhesion and virulence. J Biol Chem 280:1051–1060 [CrossRef] [PubMed] [Google Scholar]
  • Santoni G, Gismondi A, Liu JH, et al (1994) Candida albicans expresses a fibronectin receptor antigenically related to alpha 5 beta 1 integrin. Microbiology 140(Pt 11), 2971–2979 [CrossRef] [PubMed] [Google Scholar]
  • Klotz SA, Pendrak ML, Hein RC (2001) Antibodies to alpha5beta1 and alpha(v)beta3 integrins react with Candida albicans alcohol dehydrogenase. Microbiology 147(Pt 11), 3159–3164 [CrossRef] [PubMed] [Google Scholar]
  • Ray TL, Payne CD (1988) Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect Immun 56:1942–1949 [PubMed] [Google Scholar]
  • Hazan I, Sepulveda-Becerra M, Liu H (2002) Hyphal elongation is regulated independently of cell cycle in Candida albicans. Mol Biol Cell 13:134–145 [CrossRef] [PubMed] [Google Scholar]
  • Brega E, Zufferey R, Mamoun CB (2004) Candida albicans Csy1p is a nutrient sensor important for activation of amino acid uptake and hyphal morphogenesis. Eukaryot Cell 3:135–143 [CrossRef] [PubMed] [Google Scholar]
  • Gale CA, Bendel CM, McClellan M, et al (1998) Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science 279:1355–1358 [CrossRef] [PubMed] [Google Scholar]
  • Nantel A, Dignard D, Bachewich C, et al (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13:3452–3465 [CrossRef] [PubMed] [Google Scholar]
  • Staab JF, Ferrer CA, Sundstrom P (1996) Developmental expression of a tandemly repeated, proline-and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans. J Biol Chem 271:6298–6305 [CrossRef] [PubMed] [Google Scholar]
  • Wolyniak MJ, Sundstrom P (2007) Role of actin cytoskeletal dynamics in activation of the cyclic AMP pathway and HWP1 gene expression in Candida albicans. Eukaryot Cell 6:1824–1840 [CrossRef] [PubMed] [Google Scholar]
  • Lengeler KB, Davidson RC, D’souza C, et al (2000) Signal transduction cascades regulating fungal development and virulence. Microbiol Mol Biol Rev 64:746–785 [CrossRef] [PubMed] [Google Scholar]
  • Poulain D (2013) Candida albicans, plasticity and pathogenesis. Crit Rev Microbiol [in press] [Google Scholar]
  • Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538 [CrossRef] [PubMed] [Google Scholar]
  • Sundstrom P, Balish E, Allen CM (2002) Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J Infect Dis 185:521–530 [CrossRef] [PubMed] [Google Scholar]
  • Corouge M, Lordiant S, Fradin C, et al (2015) Humoral immunity links Candida albicans infection and celiac disease. PLos One 10:e0121776 [CrossRef] [PubMed] [Google Scholar]
  • Nobile CJ, Nett JE, Andes DR, Mitchell AP (2006) Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 5:1604–1610 [CrossRef] [PubMed] [Google Scholar]
  • Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 [Google Scholar]
  • Ramage G, Mowat E, Jones B, et al (2009) Our current understanding of fungal biofilms. Crit Rev Microbiol 35:340–355 [CrossRef] [PubMed] [Google Scholar]
  • Finkel JS, Mitchell AP (2011) Genetic control of Candida albicans biofilm development. Nat Rev Microbiol 9:109–118 [CrossRef] [PubMed] [Google Scholar]
  • Casadevall A, Pirofski LA (2003) The damage-response framework of microbial pathogenesis. Nat Rev Microbiol 1:17–24 [CrossRef] [PubMed] [Google Scholar]
  • Angus DC, van der Poll T (2013) Severe sepsis and septic shock. N Engl J Med 369:2063 [Google Scholar]
  • Moens E, Veldhoen M (2012) Epithelial barrier biology: good fences make good neighbours. Immunology 135:1–8 [CrossRef] [PubMed] [Google Scholar]
  • Pamer EG (2007) Immune responses to commensal and environmental microbes. Nat Immunol 8:1173–1178 [CrossRef] [PubMed] [Google Scholar]
  • Boirivant M, Amendola A, Butera A (2008) Intestinal microflora and immunoregulation. Mucosal Immunol 1(Suppl 1), S47–S49 [CrossRef] [PubMed] [Google Scholar]
  • Rakoff-Nahoum S, Medzhitov R (2008) Innate immune recognition of the indigenous microbial flora. Mucosal Immunol 1(Suppl 1), S10–S14 [CrossRef] [PubMed] [Google Scholar]
  • Gow NA, van de Veerdonk FL, Brown AJ, Netea MG (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10:112–122 [Google Scholar]
  • Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801 [CrossRef] [PubMed] [Google Scholar]
  • van der Poll T, Opal SM (2008) Host-pathogen interactions in sepsis. Lancet Infect Dis 8:32–43 [CrossRef] [PubMed] [Google Scholar]
  • Cunha C, Carvalho A, Esposito A, et al (2012) DAMP signaling in fungal infections and diseases. Front Immunol 3:286 [CrossRef] [PubMed] [Google Scholar]
  • Jouault T, Sarazin A, Martinez-Esparza M, et al (2009) Host responses to a versatile commensal: PAMPs and PRRs interplay leading to tolerance or infection by Candida albicans. Cell Microbiol 11:1007–1015 [CrossRef] [PubMed] [Google Scholar]
  • Netea MG, Brown GD, Kullberg BJ, Gow NA (2008) An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol 6:67–78 [CrossRef] [PubMed] [Google Scholar]
  • Romani L (2011) Immunity to fungal infections. Nat Rev Immunol 11:275–288 [CrossRef] [PubMed] [Google Scholar]
  • Fradin C, Slomianny MC, Mille C, et al (2008) Beta-1, 2 oligomannose adhesin epitopes are widely distributed over the different families of Candida albicans cell wall mannoproteins and are associated through both N-and O-glycosylation processes. Infect Immun 76:4509–4517 [CrossRef] [PubMed] [Google Scholar]
  • Romani L (2004) Immunity to fungal infections. Nat Rev Immunol 4:1–23 [CrossRef] [PubMed] [Google Scholar]
  • van Asbeck EC, Hoepelman AI, Scharringa J, et al (2008) Man-nose binding lectin plays a crucial role in innate immunity against yeast by enhanced complement activation and enhanced uptake of polymorphonuclear cells. BMC Microbiol 8:229 [CrossRef] [PubMed] [Google Scholar]
  • Lillegard JB, Sim RB, Thorkildson P, et al (2006) Recognition of Candida albicans by mannan-binding lectin in vitro and in vivo. J Infect Dis 193:1589–1597 [CrossRef] [PubMed] [Google Scholar]
  • Walport MJ (2001) Complement. First of two parts. N Engl J Med 344:1058–1066 [CrossRef] [PubMed] [Google Scholar]
  • Ip WK, Takahashi K, Ezekowitz RA, Stuart LM (2009) Mannose-binding lectin and innate immunity. Immunol Rev 230:9–21 [CrossRef] [PubMed] [Google Scholar]
  • van Rozendaal BA, van Spriel AB, van De Winkel JG, Haagsman HP (2000) Role of pulmonary surfactant protein D in innate defense against Candida albicans. J Infect Dis 182:917–922 [CrossRef] [PubMed] [Google Scholar]
  • van de Veerdonk FL, Netea MG (2010) T-cell Subsets and Anti-fungal Host Defenses. Curr Fungal Infect Rep 4:238–243 [CrossRef] [PubMed] [Google Scholar]
  • Sarazin A, Poulain D, Jouault T (2010) In vitro pro-and anti-inflammatory responses to viable Candida albicans yeasts by a murine macrophage cell line. Med Mycol 48:912–921 [CrossRef] [PubMed] [Google Scholar]
  • Smeekens SP, van de Veerdonk FL, van der Meer JW, et al (2010) The Candida Th17 response is dependent on mannan-and beta-glucan-induced prostaglandin E2. Int Immunol 22:889–895 [CrossRef] [PubMed] [Google Scholar]
  • Bedoya SK, Lam B, Lau K, Larkin J 3rd (2013) Th17 cells in immunity and autoimmunity. Clin Dev Immunol 2013:986789 [CrossRef] [PubMed] [Google Scholar]
  • Yang Y, Torchinsky MB, Gobert M, et al (2014) Focused specificity of intestinal T17 cells towards commensal bacterial antigens. Nature 510:152–156 [CrossRef] [PubMed] [Google Scholar]
  • Vignali DA, Collison LW, Workman CJ (2008) How regulatory T cells work. Nat Rev Immunol 8:523–532 [CrossRef] [PubMed] [Google Scholar]
  • Bonifazi P, Zelante T, D’Angelo C, et al (2009) Balancing inflammation and tolerance in vivo through dendritic cells by the commensal Candida albicans. Mucosal Immunol 2:362–374 [CrossRef] [PubMed] [Google Scholar]
  • Hotchkiss RS, Monneret G, Payen D (2013) Immunosuppression in sepsis: a novel understanding of the disorder and a new therapeutic approach. Lancet Infect Dis 13:260–268 [CrossRef] [PubMed] [Google Scholar]
  • Fenoglio D, Poggi A, Catellani S, et al (2009) Vdelta1 T lymphocytes producing IFN-gamma and IL-17 are expanded in HIV-1-infected patients and respond to Candida albicans. Blood 113:6611–6618 [CrossRef] [PubMed] [Google Scholar]
  • Laín A, Elguezabal N, Brena S, et al (2007) Diagnosis of invasive candidiasis by enzyme-linked immunosorbent assay using the N-terminal fragment of Candida albicans hyphal wall protein. BMC Microbiol 7:35 [CrossRef] [PubMed] [Google Scholar]
  • Laín A, Moragues MD, Ruiz JC, et al (2007) Evaluation of a novel enzyme-linked immunosorbent assay to detect immunoglobulin G antibody to enolase for serodiagnosis of invasive candidiasis. Clin Vaccine Immunol 14:318–319 [CrossRef] [PubMed] [Google Scholar]
  • Chiani P, Bromuro C, Cassone A, Torosantucci A, et al (2009) Anti-beta-glucan antibodies in healthy human subjects. Vaccine 27:513–519 [CrossRef] [PubMed] [Google Scholar]
  • Sendid B, Dotan N, Nseir S, et al (2008) Antibodies against glucan, chitin, and Saccharomyces cerevisiae mannan as new biomarkers of Candida albicans infection that complement tests based on C. albicans mannan. Clin Vaccine Immunol 15:1868–1877 [CrossRef] [PubMed] [Google Scholar]
  • Sendid B, Poirot JL, Tabouret M, et al (2002) Combined detection of mannanaemia and antimannan antibodies as a strategy for the diagnosis of systemic infection caused by pathogenic Candida species. J Med Microbiol 51:433–442 [CrossRef] [PubMed] [Google Scholar]
  • Sendid B, Tabouret M, Poirot JL, et al (1999) New enzyme immunoassays for sensitive detection of circulating Candida albicans mannan and antimannan antibodies: useful combined test for diagnosis of systemic candidiasis. J Clin Microbiol 37:1510–1517 [PubMed] [Google Scholar]
  • Casadevall A (1995) Antibody immunity and invasive fungal infections. Infect Immun 63:4211–4218 [PubMed] [Google Scholar]
  • Han Y, Riesselman MH, Cutler JE (2000) Protection against candidiasis by an immunoglobulin G3 (IgG3) monoclonal antibody specific for the same mannotriose as an IgM protective antibody. Infect Immun 68:1649–1654 [CrossRef] [PubMed] [Google Scholar]
  • Torosantucci A, Bromuro C, Chiani P, et al (2005) A novel glyco-conjugate vaccine against fungal pathogens. J Exp Med 202:597–606 [CrossRef] [PubMed] [Google Scholar]
  • Pachl J, Svoboda P, Jacobs F, et al (2006) A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 42:1404–1413 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.