Accès gratuit
Numéro
Réanimation
Volume 24, Numéro 2, Mars 2015
Cardiovasculaire
Page(s) 191 - 200
Section Article De Synthèse / Review Article
DOI https://doi.org/10.1007/s13546-015-1044-8
Publié en ligne 6 mars 2015
  • Furchgott RF, Zawadzki JV. (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376 [CrossRef] [PubMed] [Google Scholar]
  • Michel T, Li GK, Busconi L. (1993) Phosphorylation and subcellular translocation of endothelial nitric oxide synthase. P Proc Natl Acad Sci USA 90:6252–6256 [CrossRef] [Google Scholar]
  • Bredt DS, Hwang PM, Snyder SH. (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770 [CrossRef] [PubMed] [Google Scholar]
  • Nathan C. (1992) Nitric oxide as a secretory product of mammalian cells. FASEB J 6:3051–3064 [PubMed] [Google Scholar]
  • Nussler AK, Billiar TR. (1993) Inflammation, immunoregulation, and inducible nitric oxide synthase. J Leukoc Biol 54:171–178 [PubMed] [Google Scholar]
  • Geller DA, Nussler AK, Di Silvio M, et al (1993) Cytokines, endotoxin, and glucocorticoids regulate the expression of inducible nitric oxide synthase in hepatocytes. Proc Natl Acad Sci USA 90:522–526 [CrossRef] [Google Scholar]
  • Schroeder RA, Kuo PC. (1995) Nitric oxide: physiology and pharmacology. Anesth Analg 81:1052–1059 [PubMed] [Google Scholar]
  • Inoue Y, Bode BP, Beck DJ, et al (1993) Arginine transport in human liver. Characterization and effects of nitric oxide synthase inhibitors. Ann Surg 218:350–362 [CrossRef] [PubMed] [Google Scholar]
  • Nussler AK, Billiar TR, Liu ZZ, Morris SM. (1994) Coinduction of nitric oxide synthase and argininosuccinate synthetase in a murine macrophage cell line. Implications for regulation of nitric oxide production. J Biol Chem 269:1257–1261 [PubMed] [Google Scholar]
  • Luiking YC, Poeze M, Ramsay G, Deutz NE. (2009) Reduced citrulline production in sepsis is related to diminished de novo arginine and nitric oxide production. Am J Clin Nutr 89:142–152 [CrossRef] [PubMed] [Google Scholar]
  • Ware LB, Magarik JA, Wickersham N, et al (2013) Low plasma citrulline levels are associated with acute respiratory distress syndrome in patients with severe sepsis. Crit Care Lond Engl 17:R10. [CrossRef] [Google Scholar]
  • Tsao CM, Li KY, Chen SJ, et al (2014) Levosimendan attenuates multiple organ injury and improves survival in peritonitis-induced septic shock: studies in a rat model. Crit Care Lond Engl 18:652. [CrossRef] [Google Scholar]
  • Bruins MJ, Lamers WH, Meijer AJ, et al (2002) In vivo measurement of nitric oxide production in porcine gut, liver and muscle during hyperdynamic endotoxaemia. Br J Pharmacol 137:1225–1236 [CrossRef] [PubMed] [Google Scholar]
  • Huet O, Duranteau J. (2008) Dysfonction endothéliale : rôle des radicaux libres 17:387–392 [Google Scholar]
  • Szabó C, Módis K. (2010) Pathophysiological roles of peroxynitrite in circulatory shock. Shock Augusta Ga 34(Suppl 1):4–14 [CrossRef] [Google Scholar]
  • Jagtap P, Szabó C. (2005) Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 4:421–440 [CrossRef] [PubMed] [Google Scholar]
  • Garrabou G, Morén C, López S, et al (2012) The effects of sepsis on mitochondria. J Infect Dis 205:392–400 [CrossRef] [PubMed] [Google Scholar]
  • Szabó C, Day BJ, Salzman AL. (1996) Evaluation of the relative contribution of nitric oxide and peroxynitrite to the suppression of mitochondrial respiration in immunostimulated macrophages using a manganese mesoporphyrin superoxide dismutase mimetic and peroxynitrite scavenger. FEBS Lett 381:82–86 [CrossRef] [PubMed] [Google Scholar]
  • Brealey D, Brand M, Hargreaves I, et al (2002) Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet 360:219–223 [CrossRef] [PubMed] [Google Scholar]
  • Hollenberg SM, Cinel I. (2009) Bench-to-bedside review: nitric oxide in critical illness–update 2008. Crit Care Lond Engl 13:218. [CrossRef] [Google Scholar]
  • Awolesi MA, Widmann MD, Sessa WC, Sumpio BE. (1994) Cyclic strain increases endothelial nitric oxide synthase activity. Surgery 116:439–444 [PubMed] [Google Scholar]
  • Corson MA, James NL, Latta SE, et al (1996) Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circ Res 79:984–991 [CrossRef] [Google Scholar]
  • Boo YC, Jo H. (2003) Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. Am J Physiol Cell Physiol 285:C499–C508 [CrossRef] [PubMed] [Google Scholar]
  • Luiking YC, Engelen MP, Deutz NE. (2010) Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr Metab Care 13:97–104 [CrossRef] [PubMed] [Google Scholar]
  • Tulis DA. (2008) Novel therapies for cyclic GMP control of vascular smooth muscle growth. Am J Ther 15:551–564 [CrossRef] [PubMed] [Google Scholar]
  • Barth E, Radermacher P, Thiemermann C, et al (2006) Role of inducible nitric oxide synthase in the reduced responsiveness of the myocardium to catecholamines in a hyperdynamic, murine model of septic shock. Crit Care Med 34:307–313 [CrossRef] [PubMed] [Google Scholar]
  • Nardi GM, Scheschowitsch K, Ammar D, et al (2014) Neuronal nitric oxide synthase and its interaction with soluble guanylate cyclase is a key factor for the vascular dysfunction of experimental sepsis. Crit Care Med 42:e391–e400 [CrossRef] [PubMed] [Google Scholar]
  • Lewis SJ, Hoque A, Sandock K, et al (2007) Differential effects of peroxynitrite on the function of arginine vasopressin V(1a) receptors and alpha(1)-adrenoceptors in vivo. Vascul Pharmacol 46:24–34 [CrossRef] [PubMed] [Google Scholar]
  • Lewis SJ, Hoque A, Walton TM, Kooy NW. (2005) Potential role of nitration and oxidation reactions in the effects of peroxynitrite on the function of beta-adrenoceptor sub-types in the rat. Eur J Pharmacol 518:187–194 [CrossRef] [PubMed] [Google Scholar]
  • Benkusky NA, Lewis SJ, Kooy NW. (1999) Peroxynitritemediated attenuation of alpha-and beta-adrenoceptor agonist-induced vascular responses in vivo. Eur J Pharmacol 364:151–158 [CrossRef] [PubMed] [Google Scholar]
  • Bateman RM, Sharpe MD, Ellis CG. (2003) Bench-to-bedside review: microvascular dysfunction in sepsis–hemodynamics, oxygen transport, and nitric oxide. Crit Care Lond Engl 7:359–373 [CrossRef] [Google Scholar]
  • Cerwinka WH, Cooper D, Krieglstein CF, et al (2002) Nitric oxide modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am J Physiol Heart Circ Physiol 282:H1111–H1117 [CrossRef] [PubMed] [Google Scholar]
  • Mazzon E, De Sarro A, Caputi AP, Cuzzocrea S. (2002) Role of tight junction derangement in the endothelial dysfunction elicited by exogenous and endogenous peroxynitrite and poly(ADPribose) synthetase. Shock Augusta Ga 18:434–439 [CrossRef] [Google Scholar]
  • Villa LM, Salas E, Darley-Usmar VM, et al (1994) Peroxynitrite induces both vasodilatation and impaired vascular relaxation in the isolated perfused rat heart. Proc Natl Acad Sci USA 91:12383–12387 [CrossRef] [Google Scholar]
  • Zingarelli B, Day BJ, Crapo JD, et al (1997) The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br J Pharmacol 120:259–267 [CrossRef] [PubMed] [Google Scholar]
  • Hellyer PW, Johnson LW, Olson NC. (1997) Effect of NG-nitro-L-arginine-methyl-ester on cardiopulmonary function and biosynthesis of cyclooxygenase products during porcine endotoxemia. Crit Care Med 25:1051–1058 [CrossRef] [PubMed] [Google Scholar]
  • Eum HA, Park SW, Lee SM. (2007) Role of nitric oxide in the expression of hepatic vascular stress genes in response to sepsis. nitric oxide 17:126–133 [CrossRef] [PubMed] [Google Scholar]
  • Simon JN, Duglan D, Casadei B, Carnicer R. (2014) Nitric oxide synthase regulation of cardiac excitation-contraction coupling in health and disease. J Mol Cell Cardiol 73:80–91 [CrossRef] [PubMed] [Google Scholar]
  • Rastaldo R, Pagliaro P, Cappello S, et al (2007) Nitric oxide and cardiac function. Life Sci 81:779–793 [CrossRef] [PubMed] [Google Scholar]
  • Balligand JL, Kobzik L, Han X, et al (1995) Nitric oxide-dependent parasympathetic signaling is due to activation of constitutive endothelial (type III) nitric oxide synthase in cardiac myocytes. J Biol Chem 270:14582–14586 [CrossRef] [PubMed] [Google Scholar]
  • Panas D, Khadour FH, Szabó C, Schulz R. (1998) Proinflammatory cytokines depress cardiac efficiency by a nitric oxide-dependent mechanism. Am J Physiol 275:H1016–H1023 [PubMed] [Google Scholar]
  • Brown KA, Brain SD, Pearson JD, et al (2006) Neutrophils in development of multiple organ failure in sepsis. Lancet 368:157–169 [CrossRef] [PubMed] [Google Scholar]
  • Kubes P, Suzuki M, Granger DN. (1991) Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci USA 88:4651–4655 [CrossRef] [Google Scholar]
  • Lefer DJ, Jones SP, Girod WG, et al (1999) Leukocyteendothelial cell interactions in nitric oxide synthase-deficient mice. Am J Physiol 276:H1943–H1950 [PubMed] [Google Scholar]
  • Hickey MJ, Granger DN, Kubes P. (2001) Inducible nitric oxide synthase (iNOS) and regulation of leucocyte/endothelial cell interactions: studies in iNOS-deficient mice. Acta Physiol Scand 173:119–126 [CrossRef] [PubMed] [Google Scholar]
  • Hollenberg SM, Guglielmi M, Parrillo JE. (2007) Discordance between microvascular permeability and leukocyte dynamics in septic inducible nitric oxide synthase deficient mice. Crit Care Lond Engl 11:R125. [CrossRef] [Google Scholar]
  • Secco D, Dal Paron JA, de Oliveira SHP, et al (2003) Neutrophil migration in inflammation: nitric oxide inhibits rolling, adhesion and induces apoptosis. nitric oxide 9:153–164 [CrossRef] [PubMed] [Google Scholar]
  • Rios-Santos F, Alves-Filho JC, Souto FO, et al (2007) Down-regulation of CXCR2 on neutrophils in severe sepsis is mediated by inducible nitric oxide synthase-derived nitric oxide. Am. J. Respir. Crit Care Med 175:490–497 [CrossRef] [PubMed] [Google Scholar]
  • Thom SR, Bhopale VM, Mancini DJ, Milovanova TN. (2008) Actin S-nitrosylation inhibits neutrophil beta2 integrin function. J Biol Chem 283:10822–10834 [CrossRef] [PubMed] [Google Scholar]
  • Hickey MJ, Sharkey KA, Sihota EG, et al (1997) Inducible nitric oxide synthase-deficient mice have enhanced leukocyteendothelium interactions in endotoxemia. FASEB J 11:955–964 [PubMed] [Google Scholar]
  • Benjamim CF, Silva JS, Fortes ZB, et al (2002) Inhibition of leukocyte rolling by nitric oxide during sepsis leads to reduced migration of active microbicidal neutrophils. Infect Immun 70:3602–3610 [CrossRef] [PubMed] [Google Scholar]
  • Lush CW, Cepinskas G, Sibbald WJ, Kvietys PR. (2001) Endothelial E-and P-selectin expression in iNOS-deficient mice exposed to polymicrobial sepsis. Am J Physiol Gastrointest Liver Physiol 280:G291–G297 [PubMed] [Google Scholar]
  • Singer G, Stokes KY, Neil Granger D. (2013) Reactive oxygen and nitrogen species in sepsis-induced hepatic microvascular dysfunction. Inflamm Res Off J Eur Histamine Res Soc. 62:155–164 [Google Scholar]
  • Fortin CF, McDonald PP, Fülöp T, Lesur O. (2010) Sepsis, leukocytes, and nitric oxide (NO): an intricate affair. Shock Augusta Ga 33:344–352 [CrossRef] [Google Scholar]
  • Halliwell B. (2006) Oxidative stress and neurodegeneration: where are we now? J. Neurochem 97:1634–1658 [CrossRef] [PubMed] [Google Scholar]
  • Berg RMG, Møller K, Bailey DM. (2011) Neuro-oxidative-nitrosative stress in sepsis. J Cereb Blood Flow Metab 31:1532–1544 [CrossRef] [PubMed] [Google Scholar]
  • Mehta S. (2005) The effects of nitric oxide in acute lung injury. Vascul Pharmacol 43:390–403 [CrossRef] [PubMed] [Google Scholar]
  • Pheng LH, Francoeur C, Denis M. (1995) The involvement of nitric oxide in a mouse model of adult respiratory distress syndrome. Inflammation 19:599–610 [CrossRef] [PubMed] [Google Scholar]
  • Zhu S, Ware LB, Geiser T, et al (2001) Increased levels of nitrate and surfactant protein a nitration in the pulmonary edema fluid of patients with acute lung injury. Am J Respir Crit Care Med 163:166–172 [CrossRef] [PubMed] [Google Scholar]
  • Seekamp A, Mulligan MS, Till GO, Ward PA. (1993) Requirements for neutrophil products and L-arginine in ischemiareperfusion injury. Am J Pathol 142:1217–1226 [PubMed] [Google Scholar]
  • Nozaki Y, Hasegawa Y, Ichiyama S, et al (1997) Mechanism of nitric oxide-dependent killing of Mycobacterium bovis BCG in human alveolar macrophages. Infect Immun 65:3644–3647 [PubMed] [Google Scholar]
  • Wang L, Taneja R, Razavi HM, et al (2012) Specific role of neutrophil inducible nitric oxide synthase in murine sepsis-induced lung injury in vivo. Shock Augusta Ga 37:539–547 [CrossRef] [Google Scholar]
  • Hu P, Ischiropoulos H, Beckman JS, Matalon S. (1994) Peroxynitrite inhibition of oxygen consumption and sodium transport in alveolar type II cells. Am J Physiol 266:L628–L634 [PubMed] [Google Scholar]
  • Fernandes D, Assreuy J. (2008) Nitric oxide and vascular reactivity in sepsis. Shock Augusta Ga 30(Suppl 1):10–13 [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  • La Mura V, Pasarín M, Rodriguez-Vilarrupla A, et al (2014) Liver Sinusoidal Endothelial Dysfunction After LPS Administration: A Role for Inducible-Nitric Oxide Synthase. J. Hepatol 61:1321–1327 [CrossRef] [PubMed] [Google Scholar]
  • Ishikawa K, Calzavacca P, Bellomo R, et al (2012) Effect of selective inhibition of renal inducible nitric oxide synthase on renal blood flow and function in experimental hyperdynamic sepsis. Crit Care Med 40:2368–2375 [CrossRef] [PubMed] [Google Scholar]
  • López A, Lorente JA, Steingrub J, et al (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30 [CrossRef] [PubMed] [Google Scholar]
  • Investigators TRIUMPH, Alexander JH, Reynolds HR, et al (2007) Effect of tilarginine acetate in patients with acute myocardial infarction and cardiogenic shock: the TRIUMPH randomized controlled trial. JAMA 297:1657–1666 [CrossRef] [PubMed] [Google Scholar]
  • Vincent JL, Privalle CT, Singer M, et al (2015) Multicenter, Randomized, Placebo-Controlled Phase III Study of Pyridoxalated Hemoglobin Polyoxyethylene in Distributive Shock (PHOENIX). Crit Care Med 43:57–64 [CrossRef] [PubMed] [Google Scholar]
  • McGown CC, Brown NJ, Hellewell PG, et al (2010) Beneficial microvascular and anti-inflammatory effects of pravastatin during sepsis involve nitric oxide synthase III. Br J Anaesth 104:183–190 [CrossRef] [PubMed] [Google Scholar]
  • Kruger PS, Harward ML, Jones MA, et al (2011) Continuation of statin therapy in patients with presumed infection: a randomized controlled trial. Am J Respir Crit Care Med 183:774–781 [CrossRef] [PubMed] [Google Scholar]
  • Papazian L, Roch A, Charles PE, et al (2013) Effect of statin therapy on mortality in patients with ventilator-associated pneumonia: a randomized clinical trial. JAMA 310:1692–1700 [CrossRef] [PubMed] [Google Scholar]
  • National Heart, Lung, and Blood Institute ARDS Clinical Trials Network, Truwit JD, Bernard GR, Steingrub J, et al (2014) Rosuvastatin for sepsis-associated acute respiratory distress syndrome. N Engl J Med 370:2191–2200 [CrossRef] [PubMed] [Google Scholar]
  • Trzeciak S, Glaspey LJ, Dellinger RP, et al (2014) Randomized controlled trial of inhaled nitric oxide for the treatment of micro-circulatory dysfunction in patients with sepsis. Crit Care Med 42:2482–2492 [CrossRef] [PubMed] [Google Scholar]
  • Boerma EC, Koopmans M, Konijn A, et al (2010) Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial. Crit Care Med 38:93–100 [CrossRef] [PubMed] [Google Scholar]
  • Jansen TC, van Bommel J, Schoonderbeek FJ, et al (2010) Early lactate-guided therapy in intensive care unit patients: a multicenter, open-label, randomized controlled trial. Am J Respir Crit Care Med 182:752–761 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.