Accès gratuit
Numéro
Réanimation
Volume 24, Numéro 2, Mars 2015
Cardiovasculaire
Page(s) 112 - 121
Section Article De Synthèse / Review Article
DOI https://doi.org/10.1007/s13546-015-1050-x
Publié en ligne 16 mars 2015
  • Taccone FS, Su F, Pierrakos C, et al (2010) Cerebral microcirculation is impaired during sepsis: an experimental study. Crit Care 14:R140. [CrossRef] [PubMed] [Google Scholar]
  • Trzeciak S, Dellinger RP, Parrillo JE, et al (2007) Early microcirculatory perfusion derangements in patients with severe sepsis and septic shock: relationship to hemodynamics, oxygen transport, and survival. Ann Emerg Med 49:88–98, 98.e1–e2. Epub 2006 Nov 7. [CrossRef] [PubMed] [Google Scholar]
  • De Backer D, Creteur J, Preiser JC, et al (2002) Microvascular blood flow is altered in patients with sepsis. Am J Respir Crit Care Med 166:98–104 [CrossRef] [PubMed] [Google Scholar]
  • Neviere R, Mathieu D, Chagnon JL, et al (1996) Skeletal muscle microvascular blood flow and oxygen transport in patients with severe sepsis. Am J Respir Crit Care Med 153:191–195 [CrossRef] [PubMed] [Google Scholar]
  • Tachon G, Harrois A, Tanaka S, et al (2014) Microcirculatory alterations in traumatic hemorrhagic shock. Crit Care Med 42:1433–1441 [CrossRef] [PubMed] [Google Scholar]
  • den Uil CA, Caliskan K, Lagrand WK, et al (2009) Dose-dependent benefit of nitroglycerin on microcirculation of patients with severe heart failure. Intensive Care Med 35:1893–1899 [CrossRef] [PubMed] [Google Scholar]
  • Vellinga NA, Boerma EC, Koopmans M, et al (2015) International study on microcirculatory shock occurrence in acutely Ill patients. Crit Care Med 43:48–56 [CrossRef] [PubMed] [Google Scholar]
  • Sakr Y, Dubois MJ, De Backer D, et al (2004) Persistent micro-circulatory alterations are associated with organ failure and death in patients with septic shock. Crit Care Med 32:1825–1831 [CrossRef] [PubMed] [Google Scholar]
  • Boerma EC, Koopmans M, Konijn A, et al (2010) Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial. Crit Care Med 38:93–100 [CrossRef] [PubMed] [Google Scholar]
  • Trzeciak S, Glaspey LJ, Dellinger RP, et al (2014) Randomized controlled trial of inhaled nitric oxide for the treatment of micro-circulatory dysfunction in patients with sepsis*. Crit Care Med 42:2482–2492 [CrossRef] [PubMed] [Google Scholar]
  • Segal SS. (2005) Regulation of blood flow in the microcirculation. microcirculation 12:33–45 [CrossRef] [PubMed] [Google Scholar]
  • Boerma EC, Ince C. (2010) The role of vasoactive agents in the resuscitation of microvascular perfusion and tissue oxygenation in critically ill patients. Intensive Care Med 36:2004–2018 [CrossRef] [PubMed] [Google Scholar]
  • Taylor AE, Moore TM. (1999) Capillary fluid exchange. Am J Physiol 2776:S203–S210 [Google Scholar]
  • Marechal X, Favory R, Joulin O, et al (2008) Endothelial glycocalyx damage during endotoxemia coincides with microcirculatory dysfunction and vascular oxidative stress. Shock 29:572–576 [PubMed] [Google Scholar]
  • Donati A, Damiani E, Botticelli L, et al (2013) The aPC treatment improves microcirculation in severe sepsis/septic shock syndrome. BMC Anesthesiol 13:25. [CrossRef] [PubMed] [Google Scholar]
  • Kindig CA, Richardson TE. (1985) Poole DC (2002) Skeletal muscle capillary hemodynamics from rest to contractions: implications for oxygen transfer. J Appl Physiol 92:2513–2520 [CrossRef] [Google Scholar]
  • Poole DC, Copp SW, Hirai DM, Musch TI. (2011) Dynamics of muscle microcirculatory and blood-myocyte O(2) flux during contractions. Acta Physiol (Oxf) 202:293–310 [CrossRef] [PubMed] [Google Scholar]
  • Krogh A. (1921) Studies on the physiology of capillaries: II. The reactions to local stimuli of the blood-vessels in the skin and web of the frog. J Physiol 55:412–422 [CrossRef] [PubMed] [Google Scholar]
  • Bateman RM, Sharpe MD, Ellis CG. (2003) Bench-to-bedside review: microvascular dysfunction in sepsis — hemodynamics, oxygen transport, and nitric oxide. Crit Care 7:359–373 [CrossRef] [Google Scholar]
  • Frisbee JC. (2002) Regulation of in situ skeletal muscle arteriolar tone: interactions between two parameters. Microcirculation 9:443–462 [EDP Sciences] [PubMed] [Google Scholar]
  • Schwarz B, Hofstotter H, Salak N, et al (2001) Effects of norepinephrine and phenylephrine on intestinal oxygen supply and mucosal tissue oxygen tension. Intensive Care Med 27:593–601 [CrossRef] [PubMed] [Google Scholar]
  • Andersson A, Rundgren M, Kalman S, et al (2012) Gut microcirculatory and mitochondrial effects of hyperdynamic endotoxaemic shock and norepinephrine treatment. Br J Anaesth 108:254–261 [CrossRef] [PubMed] [Google Scholar]
  • Nakajima Y, Baudry N, Duranteau J, Vicaut E. (2006) Effects of vasopressin, norepinephrine, and L-arginine on intestinal micro-circulation in endotoxemia. Crit Care Med 34:1752–1757 [CrossRef] [PubMed] [Google Scholar]
  • Schmidt W, Schweppenhauser W, Secchi A, et al (1999) Influence of epinephrine and norepinephrine on intestinal villous blood flow during endotoxemia. J Crit Care 14:99–105 [CrossRef] [PubMed] [Google Scholar]
  • Faivre V, Kaskos H, Callebert J, et al (2005) Cardiac and renal effects of levosimendan, arginine vasopressin, and norepinephrine in lipopolysaccharide-treated rabbits. Anesthesiology 103:514–521 [CrossRef] [PubMed] [Google Scholar]
  • Krouzecky A, Matejovic M, Radej J, et al (2006) Perfusion pressure manipulation in porcine sepsis: effects on intestinal hemodynamics. Physiol Res 55:527–533 [PubMed] [Google Scholar]
  • Fries M, Ince C, Rossaint R, et al (2008) Levosimendan but not norepinephrine improves microvascular oxygenation during experimental septic shock. Crit Care Med 36:1886–1891 [CrossRef] [PubMed] [Google Scholar]
  • Krejci V, Hiltebrand LB, Sigurdsson GH. (2006) Effects of epinephrine, norepinephrine, and phenylephrine on microcirculatory blood flow in the gastrointestinal tract in sepsis. Crit Care Med 34:1456–1463 [CrossRef] [PubMed] [Google Scholar]
  • Kroppenstedt SN, Thomale UW, Griebenow M, et al (2003) Effects of early and late intravenous norepinephrine infusion on cerebral perfusion, microcirculation, brain-tissue oxygenation, and edema formation in brain-injured rats. Crit Care Med 31:2211–2221 [CrossRef] [PubMed] [Google Scholar]
  • Flint LM, Cryer HM, Simpson CJ, Harris PD. (1984) Microcirculatory norepinephrine constrictor response in hemorrhagic shock. Surgery 96:240–247 [PubMed] [Google Scholar]
  • Hernandez G, Boerma EC, Dubin A, et al (2013) Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. J Crit Care 28(538):e9–e14 [CrossRef] [Google Scholar]
  • Thooft A, Favory R, Salgado DR, et al (2011) Effects of changes in arterial pressure on organ perfusion during septic shock. Crit Care 15:R222. [CrossRef] [PubMed] [Google Scholar]
  • Georger JF, Hamzaoui O, Chaari A, et al (2010) Restoring arterial pressure with norepinephrine improves muscle tissue oxygenation assessed by near-infrared spectroscopy in severely hypotensive septic patients. Intensive Care Med 36:1882–1889 [CrossRef] [PubMed] [Google Scholar]
  • Dubin A, Pozo MO, Casabella CA, et al (2009) Increasing arterial blood pressure with norepinephrine does not improve micro-circulatory blood flow: a prospective study. Crit Care 13:R92. [CrossRef] [PubMed] [Google Scholar]
  • Jhanji S, Stirling S, Patel N, et al (2009) The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med 37:1961–1966 [CrossRef] [PubMed] [Google Scholar]
  • Deruddre S, Cheisson G, Mazoit JX, et al (2007) Renal arterial resistance in septic shock: effects of increasing mean arterial pressure with norepinephrine on the renal resistive index assessed with Doppler ultrasonography. Intensive Care Med 33:1557–1562 [CrossRef] [PubMed] [Google Scholar]
  • Bourgoin A, Leone M, Delmas A, et al (2005) Increasing mean arterial pressure in patients with septic shock: effects on oxygen variables and renal function. Crit Care Med 33:780–786 [CrossRef] [PubMed] [Google Scholar]
  • Morelli A, Lange M, Ertmer C, et al (2008) Short-term effects of phenylephrine on systemic and regional hemodynamics in patients with septic shock: a crossover pilot study. shock 29:446–451 [PubMed] [Google Scholar]
  • Morelli A, Ertmer C, Rehberg S, et al (2008) Phenylephrine versus norepinephrine for initial hemodynamic support of patients with septic shock: a randomized, controlled trial. Crit Care 12:R143. [CrossRef] [PubMed] [Google Scholar]
  • Maier S, Hasibeder WR, Hengl C, et al (2009) Effects of phenylephrine on the sublingual microcirculation during cardiopulmonary bypass. Br J Anaesth 102:485–491 [CrossRef] [PubMed] [Google Scholar]
  • LeDoux D, Astiz ME, Carpati CM, Rackow EC. (2000) Effects of perfusion pressure on tissue perfusion in septic shock. Crit Care Med 28:2729–2732 [CrossRef] [PubMed] [Google Scholar]
  • Asfar P, Pierrot M, Veal N, et al (2003) Low-dose terlipressin improves systemic and splanchnic hemodynamics in fluid-challenged endotoxic rats. Crit Care Med 31:215–220 [CrossRef] [PubMed] [Google Scholar]
  • Kopel T, Losser MR, Faivre V, Payen D. (2008) Systemic and hepatosplanchnic macro-and microcirculatory dose response to arginine vasopressin in endotoxic rabbits. Intensive Care Med 34:1313–1320 [CrossRef] [PubMed] [Google Scholar]
  • Qiu X, Huang Y, Xu J, et al (2014) Effects of terlipressin on microcirculation of small bowel mesentery in rats with endotoxic shock. J Surg Res 188:503–509 [CrossRef] [PubMed] [Google Scholar]
  • Knotzer H, Maier S, Dünser MW, et al (2006) Arginine vasopressin does not alter mucosal tissue oxygen tension and oxygen supply in an acute endotoxemic pig model. Intensive Care Med 32:170–174 [CrossRef] [PubMed] [Google Scholar]
  • Albert M, Losser MR, Hayon D, et al (2004) Systemic and renal macro-and microcirculatory responses to arginine vasopressin in endotoxic rabbits. Crit Care Med 32:1891–1898 [CrossRef] [PubMed] [Google Scholar]
  • Ristagno G, Sun S, Tang W, et al (2007) Effects of epinephrine and vasopressin on cerebral microcirculatory flows during and after cardiopulmonary resuscitation. Crit Care Med 35:2145–2149 [CrossRef] [PubMed] [Google Scholar]
  • Cheung AT, To PL, Chan DM, et al (2007) Comparison of treatment modalities for hemorrhagic shock. Artif Cells Blood Substit Immobil Biotechnol 35:173–190 [CrossRef] [PubMed] [Google Scholar]
  • McMahon PJ, Proctor KG. (2009) Vasopressin attenuates TNF-mediated inflammation in the rat cremaster microcirculation. J Trauma 67:461–473 [CrossRef] [PubMed] [Google Scholar]
  • Favory R, Salgado DR, Vincent JL. (2009) Investigational vasopressin receptor modulators in the pipeline. Expert Opin Investig Drugs 18:1119–1131 [CrossRef] [PubMed] [Google Scholar]
  • Friesenecker B, Tsai AG, Dünser MW, et al (2004) Oxygen distribution in microcirculation after arginine vasopressin-induced arteriolar vasoconstriction. Am J Physiol Heart Circ Physiol 287:H1792–H1800 [CrossRef] [PubMed] [Google Scholar]
  • Knotzer H, Pajk W, Maier S, et al (2005) Arginine vasopressin reduces intestinal oxygen supply and mucosal tissue oxygen tension. Am J Physiol Heart Circ Physiol 289:H168–H173 [CrossRef] [PubMed] [Google Scholar]
  • Bomberg H, Bierbach B, Flache S, et al (2014) Vasopressin induces rectosigmoidal mucosal ischemia during cardiopulmonary bypass. J Card Surg 29:108–115 [CrossRef] [PubMed] [Google Scholar]
  • Vollmer C, Schwartges I, Naber S, et al (2013) Vasopressin V1A receptors mediate the increase in gastric mucosal oxygenation during hypercapnia. J Endocrinol 217:59–67 [CrossRef] [PubMed] [Google Scholar]
  • Maier S, Hasibeder W, Pajk W, et al (2009) Arginine-vasopressin attenuates beneficial norepinephrine effect on jejunal mucosal tissue oxygenation during endotoxinaemia. Br J Anaesth 103:691–700 [CrossRef] [PubMed] [Google Scholar]
  • Westphal M, Freise H, Kehrel BE, et al (2004) Arginine vasopressin compromises gut mucosal microcirculation in septic rats. Crit Care Med 32:194–200 [CrossRef] [PubMed] [Google Scholar]
  • Hiltebrand LB, Krejci V, Jakob SM, et al (2007) Effects of vasopressin on microcirculatory blood flow in the gastrointestinal tract in anesthetized pigs in septic shock. Anesthesiology 106:1156–1167 [CrossRef] [PubMed] [Google Scholar]
  • Lima R, Villela NR, Bouskela E. (2012) Microcirculatory effects of selective receptor blockade during hemorrhagic shock treatment with vasopressin: experimental study in the hamster dorsal chamber. shock 38:493–498 [CrossRef] [PubMed] [Google Scholar]
  • Boerma EC, van der Voort PH, Ince C. (2005) Sublingual micro-circulatory flow is impaired by the vasopressin-analogue terlipressin in a patient with catecholamine-resistant septic shock. Acta Anaesthesiol Scand 49:1387–1390 [CrossRef] [PubMed] [Google Scholar]
  • Morelli A, Donati A, Ertmer C, et al (2011) Effects of vasopressinergic receptor agonists on sublingual microcirculation in norepinephrine-dependent septic shock. Crit Care 15:R217. [CrossRef] [PubMed] [Google Scholar]
  • Morelli A, Donati A, Ertmer C, et al (2011) Short-term effects of terlipressin bolus infusion on sublingual microcirculatory blood flow during septic shock. Intensive Care Med 37:963–969 [CrossRef] [PubMed] [Google Scholar]
  • Klinzing S, Simon M, Reinhart K, et al (2011) Moderate-dose vasopressin therapy may impair gastric mucosal perfusion in severe sepsis: a pilot study. Anesthesiology 114:1396–1402 [CrossRef] [PubMed] [Google Scholar]
  • van Haren FM, Rozendaal FW, van der Hoeven JG. (2003) The effect of vasopressin on gastric perfusion in catecholamine-dependent patients in septic shock. Chest 124:2256–2260 [CrossRef] [PubMed] [Google Scholar]
  • Lauzier F, Levy B, Lamarre P, Lesur O. (2006) Vasopressin or norepinephrine in early hyperdynamic septic shock: a randomized clinical trial. Intensive Care Med 32:1782–1789 [CrossRef] [PubMed] [Google Scholar]
  • Patel BM, Chittock DR, Russell JA, Walley KR. (2002) Beneficial effects of short-term vasopressin infusion during severe septic shock. Anesthesiology 96:576–582 [CrossRef] [PubMed] [Google Scholar]
  • Morelli A, Rocco M, Conti G, et al (2004) Effects of terlipressin on systemic and regional haemodynamics in catecholamine-treated hyperkinetic septic shock. Intensive Care Med 30:597–604 [CrossRef] [PubMed] [Google Scholar]
  • Leone M, Albanese J, Delmas A, et al (2004) Terlipressin in catecholamine-resistant septic shock patients. shock 22:314–319 [CrossRef] [PubMed] [Google Scholar]
  • Dünser MW, Mayr AJ, Ulmer H, et al (2003) Arginine vasopressin in advanced vasodilatory shock: a prospective, randomized, controlled study. Circulation 107:2313–2319 [CrossRef] [PubMed] [Google Scholar]
  • Nygren A, Thoren A, Ricksten SE. (2009) Vasopressin decreases intestinal mucosal perfusion: a clinical study on cardiac surgery patients in vasodilatory shock. Acta Anaesthesiol Scand 53:581–588 [CrossRef] [PubMed] [Google Scholar]
  • Bragadottir G, Redfors B, Nygren A, et al (2009) Low-dose vasopressin increases glomerular filtration rate, but impairs renal oxygenation in post-cardiac surgery patients. Acta Anaesthesiol Scand 53:1052–1059 [CrossRef] [PubMed] [Google Scholar]
  • Morelli A, Donati A, Ertmer C, et al (2011) Effects of vasopressinergic receptor agonists on sublingual microcirculation in norepinephrine-dependent septic shock. Crit Care 15:R217. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.