Accès gratuit
Numéro
Réanimation
Volume 24, Janvier 2015
Page(s) S352 - S360
Section Session Thématique
DOI https://doi.org/10.1007/s13546-015-1019-1
Publié en ligne 12 février 2016
  • Martin GS, Mannino DM, Eaton S, et al (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554 [CrossRef] [PubMed] [Google Scholar]
  • Kaukonen K-M, Bailey M, Suzuki S, et al (2014) Mortality Related to Severe Sepsis and Septic Shock Among Critically Ill Patients in Australia and New Zealand, 2000–2012. JAMA 311:1308 [CrossRef] [PubMed] [Google Scholar]
  • Quartin AA, Schein RM, Kett DH, et al (1997) Magnitude and duration of the effect of sepsis on survival. Department of Veterans Affairs Systemic Sepsis Cooperative Studies Group. JAMA 277:1058–1063 [CrossRef] [PubMed] [Google Scholar]
  • Martin GS, Mannino DM, Moss M (2006) The effect of age on the development and outcome of adult sepsis. Crit Care Med 34:15–21 [CrossRef] [PubMed] [Google Scholar]
  • Angus DC, van der Poll T (2013) Severe Sepsis and Septic Shock. N Engl J Med 369:840–851 [CrossRef] [PubMed] [Google Scholar]
  • Rittirsch D, Flierl MA, Ward PA (2008) Harmful molecular mechanisms in sepsis. Nat Rev Immunol 8:776–787 [CrossRef] [PubMed] [Google Scholar]
  • Thomas L (1972) Germs. N Engl J Med 287:553–555 [CrossRef] [PubMed] [Google Scholar]
  • Bone RC, Grodzin CJ, Balk RA (1997) Sepsis: a new hypothesis for pathogenesis of the disease process. Chest 112:235–243 [CrossRef] [PubMed] [Google Scholar]
  • Cavaillon JM, Adib-Conquy M (2006) Bench-to-bedside review: endotoxin tolerance as a model of leukocyte reprogramming in sepsis. Crit Care 10:233 [CrossRef] [Google Scholar]
  • van der Poll T, Opal SM (2008) Host-pathogen interactions in sepsis. Lancet Infect Dis 8:32–43 [CrossRef] [PubMed] [Google Scholar]
  • Bone RC, Balk RA, Cerra FB, et al (1992) Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 101:1644–1655 [CrossRef] [PubMed] [Google Scholar]
  • Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365:63–78 [CrossRef] [PubMed] [Google Scholar]
  • Pugin JR (2012) How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome. Ann Intensive Care 2:27 [CrossRef] [PubMed] [Google Scholar]
  • Chan JK, Roth J, Oppenheim JJ, et al (2012) Alarmins: awaiting a clinical response. J Clin Invest 122:2711–2719 [CrossRef] [PubMed] [Google Scholar]
  • Cavaillon J-M, Adib-Conquy M, Fitting C, et al (2003) Cytokine Cascade in Sepsis. Scand J Infect Dis 35:535–544 [CrossRef] [PubMed] [Google Scholar]
  • Cavaillon JM, Fitting C, Haeffner-Cavaillon N (1990) Recombinant C5a enhances interleukin 1 and tumor necrosis factor release by lipopolysaccharide-stimulated monocytes and macrophages. Eur J Immunol 20:253–257 [CrossRef] [PubMed] [Google Scholar]
  • Granowitz EV, Porat R, Gelfand JA, et al (1994) Administration of low-dose endotoxin to healthy humans increases C5a binding to circulating neutrophils. J Infect Dis 169:480–482 [CrossRef] [PubMed] [Google Scholar]
  • Tracey KJ, Beutler B, Lowry SF, et al (1986) Shock and tissue injury induced by recombinant human cachectin. Science 234:470–474 [CrossRef] [PubMed] [Google Scholar]
  • Niederbichler AD, Hoesel LM, Westfall MV, et al (2006) An essential role for complement C5a in the pathogenesis of septic cardiac dysfunction. J Exp Med 203:53–61 [CrossRef] [PubMed] [Google Scholar]
  • Beutler B, Milsark IW, Cerami AC (1985) Passive immunization against cachectin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 229:869–871 [CrossRef] [PubMed] [Google Scholar]
  • Ohlsson K, Björk P, Bergenfeldt M, et al (1990) Interleukin-1 receptor antagonist reduces mortality from endotoxin shock. Nature 348:550–552 [CrossRef] [PubMed] [Google Scholar]
  • Chapman PB, Lester TJ, Casper ES, et al (1987) Clinical pharmacology of recombinant human tumor necrosis factor in patients with advanced cancer. J Clin Oncol 5:1942–1951 [PubMed] [Google Scholar]
  • Arndt P, Abraham E (2001) Immunological therapy of sepsis: experimental therapies. Intensive Care Med 27(Suppl 1):S104–S115 [CrossRef] [PubMed] [Google Scholar]
  • Proft T, Sriskandan S, Yang L, et al (2003) Superantigens and streptococcal toxic shock syndrome. Emerging Infect Dis 9:1211–1218 [CrossRef] [Google Scholar]
  • Sorensen TIA, Nielsen GG, Andersen PK, et al (1988) Genetic and Environmental Influences on Premature Death in Adult Adoptees. N Engl J Med 318:727–732 [CrossRef] [PubMed] [Google Scholar]
  • Emonts M, Hazelzet JA, de Groot R, et al (2003) Host genetic determinants of Neisseria meningitidis infections. Lancet Infect Dis 3:565–577 [CrossRef] [PubMed] [Google Scholar]
  • Meakins JL, Pietsch JB, Bubenick O, et al (1977) Delayed hypersensitivity: indicator of acquired failure of host defenses in sepsis and trauma. Ann Surg 186:241–250 [CrossRef] [PubMed] [Google Scholar]
  • Alberti C, Brun-Buisson C, Burchardi H, et al (2001) Epidemiology of sepsis and infection in ICU patients from an international multicentre cohort study. Intensive Care Med 28:108–121 [CrossRef] [PubMed] [Google Scholar]
  • Otto GP, Sossdorf M, Claus RA, et al (2011) The late phase of sepsis is characterized by an increased microbiological burden and death rate. Crit Care 15:R183 [CrossRef] [PubMed] [Google Scholar]
  • Luyt C-E, Combes A, Deback C, et al (2007) Herpes Simplex Virus Lung Infection in Patients Undergoing Prolonged Mechanical Ventilation. Am J Respir Crit Care Med 175:935–942 [CrossRef] [PubMed] [Google Scholar]
  • Limaye AP, Kirby KA, Rubenfeld GD, et al (2008) Cytomegalovirus reactivation in critically ill immunocompetent patients. JAMA 300:413–422 [CrossRef] [PubMed] [Google Scholar]
  • Walton AH, Muenzer JT, Rasche D, et al (2014) Reactivation of Multiple Viruses in Patients with Sepsis. PLoS ONE 9:e98819 [CrossRef] [PubMed] [Google Scholar]
  • Torgersen C, Moser P, Luckner G, et al (2009) Macroscopic Postmortem Findings in 235 Surgical Intensive Care Patients with Sepsis. Anesth Analg 108:1841–1847 [CrossRef] [PubMed] [Google Scholar]
  • Prins JM, Kuijper EJ, Mevissen ML, et al (1995) Release of tumor necrosis factor alpha and interleukin 6 during antibiotic killing of Escherichia coli in whole blood: influence of antibiotic class, antibiotic concentration, and presence of septic serum. Infect Immun 63:2236–2242 [PubMed] [Google Scholar]
  • Girardin E, Roux-Lombard P, Grau GE, et al (1992) Imbalance between tumour necrosis factor-alpha and soluble TNF receptor concentrations in severe meningococcaemia. The J5 Study Group. Immunology 76:20–23 [PubMed] [Google Scholar]
  • Brandtzaeg P, Osnes L, Ovstebo R, et al (1996) Net inflammatory capacity of human septic shock plasma evaluated by a monocyte- based target cell assay: identification of interleukin-10 as a major functional deactivator of human monocytes. J Exp Med 184:51–60 [CrossRef] [PubMed] [Google Scholar]
  • Tattevin P, Monnier D, Tribut O, et al (2010) Enhanced Indoleamine 2, 3-Dioxygenase Activity in Patients with Severe Sepsis and Septic Shock. J Infect Dis 201:956–966 [CrossRef] [PubMed] [Google Scholar]
  • Hotchkiss RS, Swanson PE, Freeman BD, et al (1999) Apoptotic cell death in patients with sepsis, shock, and multiple organ dysfunction. Crit Care Med 27:1230–1251 [CrossRef] [PubMed] [Google Scholar]
  • Le Tulzo Y, Pangault C, Gacouin A, et al (2002) Early circulating lymphocyte apoptosis in human septic shock is associated with poor outcome. Shock 18:487–494 [CrossRef] [PubMed] [Google Scholar]
  • Grimaldi D, Louis S, Pène F, et al (2011) Profound and persistent decrease of circulating dendritic cells is associated with ICU- acquired infection in patients with septic shock. Intensive Care Med 37:1438–1446 [CrossRef] [PubMed] [Google Scholar]
  • Hotchkiss RS, Chang KC, Grayson MH, et al (2003) Adoptive transfer of apoptotic splenocytes worsens survival, whereas adoptive transfer of necrotic splenocytes improves survival in sepsis. Proc Natl Acad Sci USA 100:6724–6729 [CrossRef] [Google Scholar]
  • Savill J, Dransfield I, Gregory C, et al (2002) A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol 2:965–975 [CrossRef] [PubMed] [Google Scholar]
  • Monneret G, Debard AL, Venet F, et al (2003) Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis- induced immunoparalysis. Crit Care Med 31:2068–2071 [CrossRef] [PubMed] [Google Scholar]
  • Venet F, Pachot A, Debard A-L, et al (2004) Increased percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease of CD4+CD25- lymphocytes. Crit Care Med 32:2329–2331 [CrossRef] [PubMed] [Google Scholar]
  • Venet F, Chung C-S, Kherouf H, et al (2009) Increased circulating regulatory T cells (CD4(+)CD25 (+)CD127 (-)) contribute to lymphocyte anergy in septic shock patients. Intensive Care Med 35:678–686 [CrossRef] [PubMed] [Google Scholar]
  • Munoz C, Carlet J, Fitting C, et al (1991) Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 88:1747–1754 [CrossRef] [PubMed] [Google Scholar]
  • Rigato O, Salomao R (2003) Impaired production of interferongamma and tumor necrosis factor-alpha but not of interleukin 10 in whole blood of patients with sepsis. Shock 19:113–116 [CrossRef] [PubMed] [Google Scholar]
  • Le Tulzo Y, Pangault C, Amiot L, et al (2004) Monocyte Human Leukocyte Antigen-DR Transcriptional Downregulation by Cortisol during Septic Shock. Am J Respir Crit Care Med 169:1144–1151 [CrossRef] [PubMed] [Google Scholar]
  • Fumeaux T, Pugin J (2002) Role of Interleukin-10 in the Intracellular Sequestration of Human Leukocyte Antigen-DR in Monocytes during Septic Shock. Am J Respir Crit Care Med 166:1475–1482 [CrossRef] [PubMed] [Google Scholar]
  • Pangault C, Le Tulzo Y, Tattevin P, et al (2006) Downmodulation of granulocyte macrophage-colony stimulating factor receptor on monocytes during human septic shock. Crit Care Med 34:1193–1201 [CrossRef] [PubMed] [Google Scholar]
  • Boomer JS, To K, Chang KC, et al (2011) Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 306:2594–2605 [CrossRef] [PubMed] [Google Scholar]
  • Chang K, Svabek C, Vazquez-Guillamet C, et al (2014) Targeting the programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit Care 18:R3 [CrossRef] [PubMed] [Google Scholar]
  • Drifte G, Dunn-Siegrist I, Tissières P, et al (2013) Innate Immune Functions of Immature Neutrophils in Patients With Sepsis and Severe Systemic Inflammatory Response Syndrome*. Crit Care Med 41:820–832 [CrossRef] [PubMed] [Google Scholar]
  • Stephan F, Yang K, Tankovic J, et al (2002) Impairment of polymorphonuclear neutrophil functions precedes nosocomial infections in critically ill patients. Crit Care Med 30:315–322 [CrossRef] [PubMed] [Google Scholar]
  • Delano MJ, Scumpia PO, Weinstein JS, et al (2007) MyD88- dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis. J Exp Med 204:1463–1474 [CrossRef] [PubMed] [Google Scholar]
  • Xiao W, Mindrinos MN, Seok J, et al (2011) A genomic storm in critically injured humans. J Exp Med 208:2581–2590 [CrossRef] [PubMed] [Google Scholar]
  • Moine P, Abraham E (2004) Immunomodulation and sepsis: impact of the pathogen. Shock 22:297–308 [CrossRef] [PubMed] [Google Scholar]
  • Coisel Y, Bousbia S, Forel JM, et al (2012) Cytomegalovirus and Herpes Simplex Virus Effect on the Prognosis of Mechanically Ventilated Patients Suspected to Have Ventilator-Associated Pneumonia. PLoS ONE 7:e51340 [CrossRef] [PubMed] [Google Scholar]
  • Yende S, D’Angelo G, Kellum JA, et al (2008) Inflammatory Markers at Hospital Discharge Predict Subsequent Mortality after Pneumonia and Sepsis. Am J Respir Crit Care Med 177:1242–1247 [CrossRef] [PubMed] [Google Scholar]
  • Hotchkiss RS, Monneret G, Payen D (2013) Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol 13:862–874 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.