Accès gratuit
Numéro
Réanimation
Volume 24, Janvier 2015
Page(s) S322 - S331
Section Session Thématique en Réanimation Pédiatrique
DOI https://doi.org/10.1007/s13546-014-1004-8
Publié en ligne 12 février 2016
  • Alexander CM, Teller LE, Gross JB (1989) Principles of pulse oximetry: theoretical and practical considerations. Anesth Analg 68:368–376 [CrossRef] [PubMed] [Google Scholar]
  • Jubran A (1999) Pulse oximetry. Crit Care 3:R11–R17 [CrossRef] [PubMed] [Google Scholar]
  • Nijboer JA, Dorlas JC, Mahieu HF (1981) Photoelectric plethysmography: some fundamental aspects of the reflection and transmission method. Clin Phys Physiol Meas 2:205–215 [CrossRef] [PubMed] [Google Scholar]
  • Feissel M (2007) The pulse oxymetry plethysmographic curve: an old signal with a great future? Principles and clinical applications. Réanimation 16:124–131 [CrossRef] [Google Scholar]
  • Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Res- pir Crit Care Med 162:134–138 [CrossRef] [Google Scholar]
  • Feissel M, Michard F, Mangin I, et al (2001) Respiratory changes in aortic blood velocity as an indicator of fluid responsiveness in ventilated patients with septic shock. Chest 119:867–873 [CrossRef] [PubMed] [Google Scholar]
  • Feissel M, Michard F, Faller JP, Teboul JL (2004) The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med 30:1834–1837 [CrossRef] [PubMed] [Google Scholar]
  • Vieillard-Baron A, Chergui K, Rabiller A, et al (2004) Superior vena caval collapsibility as a gauge of volume status in ventilated septic patients. Intensive Care Med 30:1734–1739 [PubMed] [Google Scholar]
  • Monnet X, Teboul JL (2013) Assessment of volume responsiveness during mechanical ventilation: recent advances. Crit Care 17:217 [PubMed] [Google Scholar]
  • Durand P, Chevret L, Essouri S, et al (2008) Respiratory variations in aortic blood flow predict fluid responsiveness in ventilated children. Intensive Care Med 34:888–894 [CrossRef] [PubMed] [Google Scholar]
  • Cannesson M, Besnard C, Durand PG, et al (2005) Relation between respiratory variations in pulse oximetry plethysmographic waveform amplitude and arterial pulse pressure in ventilated patients. Crit Care 9:R562–R568 [CrossRef] [PubMed] [Google Scholar]
  • Cannesson M, Desebbe O, Rosamel P, et al (2008) Pleth variability index to monitor the respiratory variations in the pulse oximeter plethysmographic waveform amplitude and predict fluid responsiveness in the operating theatre. Br J Anaesth 101:200–206 [CrossRef] [PubMed] [Google Scholar]
  • Feissel M, Kalakhy R, Banwarth P, et al (2013) Plethysmogra- phic variation index predicts fluid responsiveness in ventilated patients in the early phase of septic shock in the emergency department: a pilot study. J Crit Care 28:634–639 [CrossRef] [PubMed] [Google Scholar]
  • Feissel M, Teboul JL, Merlani P, et al (2007) Plethysmographic dynamic indices predict fluid responsiveness in septic ventilated patients. Intensive Care Med 33:993–999 [CrossRef] [PubMed] [Google Scholar]
  • Monnet X, Guérin L, Jozwiak M, et al (2013) Pleth variability index is a weak predictor of fluid responsiveness in patients receiving norepinephrine. Br J Anaesth 110:207–213 [CrossRef] [PubMed] [Google Scholar]
  • Nilsson L, Johansson A, Kalman S (2003) Macrocirculation is not the sole determinant of respiratory induced variations in the reflection mode photoplethysmographic signal. Physiol Mea 24:925–937 [CrossRef] [Google Scholar]
  • Monnet X, Lamia B, Teboul JL (2005) Pulse oximeter as a sensor of fluid responsiveness: do we have our finger on the best solution? Crit Care 9:429–430 [CrossRef] [PubMed] [Google Scholar]
  • Zaramella P, Freato F, Quaresima V, et al (2005) Foot pulse oximeter perfusion index correlates with calf muscle perfusion measured by near-infrared spectroscopy in healthy neonates. J Perina- tol 25:417–422 [CrossRef] [Google Scholar]
  • Granelli Ad, Ostman-Smith I (2007) Noninvasive peripheral perfusion index as a possible tool for screening for critical left heart obstruction. Acta Paediatr 96:1455–1459 [CrossRef] [PubMed] [Google Scholar]
  • Hakan N, Dilli D, Zenciroglu A, et al (2014) Reference values of perfusion indices in hemodynamically stable newborns during the early neonatal period. Eur J Pediatr 173:597–602 [CrossRef] [PubMed] [Google Scholar]
  • Kinoshita M, Hawkes CP, Ryan CA, Dempsey EM (2013) Perfusion index in the very preterm infant. Acta Paediatr 102:e398–e401 [CrossRef] [PubMed] [Google Scholar]
  • Cresi F, Pelle E, Calabrese R, et al (2010) Perfusion index variations in clinically and hemodynamically stable preterm newborns in the first week of life. Ital J Pediatr 36:6 [CrossRef] [PubMed] [Google Scholar]
  • Takahashi S, Kakiuchi S, Nanba Y, et al (2010) The perfusion index derived from a pulse oximeter for predicting low superior vena cava flow in very low birth weight infants. J Perinatol 30:265–269 [CrossRef] [PubMed] [Google Scholar]
  • Vidal M, Ferragu F, Durand S, et al (2013) Perfusion index and its dynamic changes in preterm neonates with patent ductus arteriosus. Acta Paediatr 102:373–378 [CrossRef] [PubMed] [Google Scholar]
  • Evans N (2006) Assessment and support of the preterm circulation. Early Hum Dev 82:803–810 [CrossRef] [PubMed] [Google Scholar]
  • Sahni R, Schulze KF, Ohira-Kist K, et al (2010) Interactions among peripheral perfusion, cardiac activity, oxygen saturation, thermal profile and body position in growing low birth weight infants. Acta Paediatr 99:135–139 [PubMed] [Google Scholar]
  • Mellander M, Sunnegàrdh J (2006) Failure to diagnose critical heart malformations in newborns before discharge–an increasing problem? Acta Paediatr 95:407–413 [CrossRef] [PubMed] [Google Scholar]
  • de-Wahl Granelli A, Wennergren M, Sandberg K, et al (2009)Impact of pulse oximetry screening on the detection of duct dependent congenital heart disease: a Swedish prospective screening study in 39, 821 newborns. BMJ 338:a3037 [CrossRef] [PubMed] [Google Scholar]
  • Ewer AK, Granelli AD, Manzoni P, et al (2013) Pulse oximetry screening for congenital heart defects. Lancet 382:856–857 [CrossRef] [PubMed] [Google Scholar]
  • De Felice C, Latini G, Vacca P, et al (2002) The pulse oximeter perfusion index as a predictor for high illness severity in neonates. Eur J Pediatr 161:561–562 [CrossRef] [PubMed] [Google Scholar]
  • De Felice C, Del Vecchio A, Criscuolo M, et al (2005) Early postnatal changes in the perfusion index in term newborns with subclinical chorioamnionitis. Arch Dis Child Fetal Neonatal Ed 90:F411–F414 [CrossRef] [PubMed] [Google Scholar]
  • De Felice C, Leoni L, Tommasini E, et al (2008) Maternal pulse oximetry perfusion index as a predictor of early adverse respiratory neonatal outcome after elective cesarean delivery. Pediatr Crit Care Med 9:203–208 [CrossRef] [PubMed] [Google Scholar]
  • Karadag N, Dilli D, Zenciroglu A, et al (2014) Perfusion index variability in preterm infants treated with two different natural surfactants for respiratory distress syndrome. Am J Perinatol 31:1015–1022 [CrossRef] [PubMed] [Google Scholar]
  • Khositseth A, Muangyod N, Nuntnarumit P (2013) Perfusion index as a diagnostic tool for patent ductus arteriosus in preterm infants. Neonatology 104:250–254 [CrossRef] [PubMed] [Google Scholar]
  • Hiedl S, Schwepcke A, Weber F, et al (2010) Microcirculation in preterm infants: profound effects of patent ductus arteriosus. JPediatr 156:191–196 [CrossRef] [Google Scholar]
  • Lima AP, Beelen P, Bakker J (2002) Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med 30:1210–1213 [CrossRef] [PubMed] [Google Scholar]
  • Uemura A, Yagihara M, Miyabe M (2006) Pulse oximeter perfusion index as a predictor for the effect of pediatrie epidnral hloek. Anesthesiology 105:AI354 [CrossRef] [Google Scholar]
  • Xu Z, Zhang J, Shen H, Zheng J (2013) Assessment of pulse oximeter perfusion index in pediatric caudal block under basal ketamine anesthesia. ScientificWorld Journal 19:183493 [Google Scholar]
  • Latini G, Dipaola L, De Felice C (2012) First day of life reference values for pleth variability index in spontaneously breathing term newborns. Neonatology 101:179–182 [CrossRef] [PubMed] [Google Scholar]
  • Renner J, Broch O, Gruenewald M, et al (2011) Non-invasive prediction of fluid responsiveness in infants using pleth variability index. Anaesthesia 66:582–589 [CrossRef] [PubMed] [Google Scholar]
  • Byon HJ, Lim CW, Lee JH, et al (2013) Prediction of fluid responsiveness in mechanically ventilated children undergoing neurosurgery. Br J Anaesth 110:586–591 [CrossRef] [PubMed] [Google Scholar]
  • Pereira de Souza Neto E, Grousson S, Duflo F, et al (2011) Predicting fluid responsiveness in mechanically ventilated children under general anaesthesia using dynamic parameters and trans- thoracic echocardiography. Br J Anaesth 106:856–864 [CrossRef] [PubMed] [Google Scholar]
  • Chandler JR, Cooke E, Petersen C, et al (2012) Pulse oximeter plethysmograph variation and its relationship to the arterial waveform in mechanically ventilated children. J Clin Monit Comput 26:145–151 [CrossRef] [PubMed] [Google Scholar]
  • Chung E, Cannesson M (2012) Using noninvasive dynamic parameters of fluid responsiveness in children: there is still much to learn. J Clin Monit Comput 26:153–155 [CrossRef] [PubMed] [Google Scholar]
  • Gan H, Cannesson M, Chandler JR, Ansermino JM (2013) Predicting fluid responsiveness in children: a systematic review. Anesth Analg 117:1380–1392 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.