Accès gratuit
Numéro
Réanimation
Volume 24, Janvier 2015
Page(s) S297 - S303
Section Session Thématique
DOI https://doi.org/10.1007/s13546-014-1011-9
Publié en ligne 12 février 2016
  • Pirofski LA, Casadevall A (2002) The meaning of microbial exposure, infection, colonisation, and disease in clinical practice. Lancet Infect Dis 2:628–635 [CrossRef] [PubMed] [Google Scholar]
  • Arendrup MC (2010) Epidemiology of invasive candidiasis. Curr Opin Crit Care 16:445–452 [CrossRef] [PubMed] [Google Scholar]
  • Bloemendaal AL, Fluit AC, Jansen WM, et al (2009) Acquisition and cross-transmission of Staphylococcus aureus in European intensive care units. Infect Control Hosp Epidemiol 30:117–124 [CrossRef] [PubMed] [Google Scholar]
  • Venier AG, Leroyer C, Slekovec C, et al (2014) Risk factors for Pseudomonas aeruginosa acquisition in intensive care units: a prospective multicentre study. J Hosp Infect 88:103–108 [CrossRef] [PubMed] [Google Scholar]
  • Wertheim HF, Melles DC, Vos MC, et al (2005) The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect Dis 5:751–762 [CrossRef] [PubMed] [Google Scholar]
  • Solberg CO (1965) A study of carriers of Staphylococcus aureus with special regard to quantitative bacterial estimations. Acta Med Scand Suppl 436:1–96 [PubMed] [Google Scholar]
  • Wertheim HF, Vos MC, Ott A, et al (2004) Risk and outcome of nosocomial Staphylococcus aureus bacteraemia in nasal carriers versus non-carriers. Lancet 364:703–705 [CrossRef] [PubMed] [Google Scholar]
  • Levy PY, Ollivier M, Drancourt M, et al (2013) Relation between nasal carriage of Staphylococcus aureus and surgical site infection in orthopaedic surgery: the role of nasal contamination. A systematic literature review and meta-analysis. Orthop Traumatol Surg Res 99:645–651 [CrossRef] [PubMed] [Google Scholar]
  • Pujol M, Peña C, Pallares R, et al (1996) Nosocomial Staphylococcus aureus bacteremia among nasal carriers of methicillin-resistant and methicillin-susceptible strains. Am J Med 100:509–516 [CrossRef] [PubMed] [Google Scholar]
  • Kalmeijer MD, van Nieuwland-Bollen E, Bogaers-Hofman D, de Baere GA (2000) Nasal carriage of Staphylococcus aureus is a major risk factor for surgical-site infections in orthopedic surgery. Infect Control Hosp Epidemiol 21:319–323 [CrossRef] [PubMed] [Google Scholar]
  • Datta R, Shah A, Huang SS, et al (2014) High nasal burden of methicillin-resistant Staphylococcus aureus increases risk of invasive disease. J Clin Microbiol 52:312–314 [CrossRef] [PubMed] [Google Scholar]
  • Vollaard EJ, Clasener HA (1994) Colonization resistance. Antimicrob Agents Chemother 38:409–414 [CrossRef] [PubMed] [Google Scholar]
  • Hoyen CK, Pultz NJ, Paterson DL, et al (2003) Effect of parenteral antibiotic administration on establishment of intestinal colonization in mice by Klebsiella pneumoniae strains producing extended-spectrum beta-lactamases. Antimicrob Agents Chemother 47:3610–3612 [CrossRef] [PubMed] [Google Scholar]
  • Perez F, Pultz MJ, Endimiani A, et al (2011) Effect of antibiotic treatment on establishment and elimination of intestinal colonization by KPC-producing Klebsiella pneumoniae in mice. Antimicrob Agents Chemother 55:2585–2589 [CrossRef] [PubMed] [Google Scholar]
  • Pultz NJ, Stiefel U, Subramanyan S, et al (2005) Mechanisms by which anaerobic microbiota inhibit the establishment in mice of intestinal colonization by vancomycin-resistant Enterococcus. J Infect Dis 191:949–956 [CrossRef] [PubMed] [Google Scholar]
  • Bhalla A, Pultz NJ, Ray AJ, et al (2003) Antianaerobic antibiotic therapy promotes overgrowth of antibiotic-resistant, Gram-negative bacilli and vancomycin-resistant enterococci in the stool of colonized patients. Infect Control Hosp Epidemiol 24:644–649 [CrossRef] [PubMed] [Google Scholar]
  • Donskey CJ, Chowdhry TK, Hecker MT, et al (2000) Effect of antibiotic therapy on the density of vancomycin-resistant enterococci in the stool of colonized patients. N Engl J Med 343:1925–1932 [CrossRef] [PubMed] [Google Scholar]
  • Doernberg SB, Winston LG (2012) Risk factors for acquisition of extended-spectrum β-lactamase-producing Escherichia coli in an urban county hospital. Am J Infect Control 40:123–127 [CrossRef] [PubMed] [Google Scholar]
  • Papadimitriou-Olivgeris M, Marangos M, Fligou F, et al (2012) Risk factors for KPC-producing Klebsiella pneumoniae enteric colonization upon ICU admission. J Antimicrob Chemother 67:2976–2981 [CrossRef] [PubMed] [Google Scholar]
  • Lepelletier D, Cady A, Caroff N, et al (2010) Imipenem-resistant Pseudomonas aeruginosa gastrointestinal carriage among hospitalized patients: risk factors and resistance mechanisms. Diagn Microbiol Infect Dis 66:1–6 [CrossRef] [Google Scholar]
  • Lepelletier D, Caroff N, Riochet D, et al (2006) Role of hospital stay and antibiotic use on Pseudomonas aeruginosa gastrointestinal colonization in hospitalized patients. Eur J Clin Microbiol Infect Dis 25:600–603 [CrossRef] [PubMed] [Google Scholar]
  • Thuong M, Arvaniti K, Ruimy R, et al (2003) Epidemiology of Pseudomonas aeruginosa and risk factors for carriage acquisition in an intensive care unit. J Hosp Infect 53:274–282 [CrossRef] [PubMed] [Google Scholar]
  • Boyer A, Doussau A, Thiébault R, et al (2011) Pseudomonas aeruginosa acquisition on an intensive care unit: relationship between antibiotic selective pressure and patients’ environment. Crit Care 15:R55 [CrossRef] [PubMed] [Google Scholar]
  • Reddy P, Malczynski M, Obias A, et al (2007) Screening for extended-spectrum beta-lactamase-producing Enterobacteriaceae among high-risk patients and rates of subsequent bacteremia. Clin Infect Dis 45:846–852 [CrossRef] [PubMed] [Google Scholar]
  • Goulenok T, Ferroni A, Bille E, et al (2013) Risk factors for developing ESBL Escherichia coli: can clinicians predict infection in patients with prior colonization? J Hosp Infect 84:294–299 [CrossRef] [PubMed] [Google Scholar]
  • Borer A, Saidel-Odes L, Eskira S, et al (2012) Risk factors for developing clinical infection with carbapenem-resistant Klebsiella pneumoniae in hospital patients initially only colonized with carbapenem-resistant K. pneumoniae. Am J Infect Control 40:421–425 [CrossRef] [PubMed] [Google Scholar]
  • Satlin MJ, Jenkins SG, Walsh TJ (2014) The global challenge of carbapenem-resistant Enterobacteriaceae in transplant recipients and patients with hematologic malignancies. Clin Infect Dis 58:1274–1283 [CrossRef] [PubMed] [Google Scholar]
  • Razazi K, Derde LP, Verachten M, et al (2012) Clinical impact and risk factors for colonization with extended-spectrum β-lactamase-producing bacteria in the intensive care unit. Intensive Care Med 38:1769–1778 [CrossRef] [PubMed] [Google Scholar]
  • Arnan M, Gudiol C, Calatayud L, et al (2011) Risk factors for, and clinical relevance of, faecal extended-spectrum β-lactamase producing Escherichia coli (ESBL-EC) carriage in neutropenic patients with haematological malignancies. Eur J Clin Microbiol Infect Dis 30:355–360 [CrossRef] [PubMed] [Google Scholar]
  • Bert F, Larroque B, Paugam-Burtz C, et al (2012) Pretransplant fecal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae and infection after liver transplant, France. Emerg Infect Dis 18:908–916 [CrossRef] [PubMed] [Google Scholar]
  • Rodríguez-Baño J, Picón E, Gijón P, et al (2010) Communityonset bacteremia due to extended-spectrum beta-lactamaseproducing Escherichia coli: risk factors and prognosis. Clin Infect Dis 50:40–48 [CrossRef] [PubMed] [Google Scholar]
  • Zahar JR, Lortholary O, Martin C, et al (2009) Addressing the challenge of extended-spectrum beta-lactamases. Curr Opin Investig Drugs 10:172–180 [PubMed] [Google Scholar]
  • Schechner V, Kotlovsky T, Kazma M, et al (2013) Asymptomatic rectal carriage of blaKPC producing carbapenem-resistant Enterobacteriaceae: who is prone to become clinically infected? Clin Microbiol Infect 19:451–456 [CrossRef] [PubMed] [Google Scholar]
  • Ruppé E, Lixandru B, Cojocaru R, et al (2013) Relative fecal abundance of extended-spectrum-β-lactamase-producing Escherichia coli strains and their occurrence in urinary tract infections in women. Antimicrob Agents Chemother 57:4512–4517 [CrossRef] [PubMed] [Google Scholar]
  • Pamer EG (2007) Immune responses to commensal and environmental microbes. Nat Immunol 8:1173–1178 [CrossRef] [PubMed] [Google Scholar]
  • Brandl K, Plitas G, Mihu CN, et al (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–807 [CrossRef] [PubMed] [Google Scholar]
  • Ubeda C, Taur Y, Jenq RR, et al (2010) Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans. J Clin Invest 120:4332–4341 [CrossRef] [PubMed] [Google Scholar]
  • Taur Y, Xavier JB, Lipuma L, et al (2012) Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clin Infect Dis 55:905–914 [CrossRef] [PubMed] [Google Scholar]
  • Sullivan A, Edlund C, Nord CE (2001) Effect of antimicrobial agents on the ecological balance of human microflora. Lancet Infect Dis 1:101–114 [CrossRef] [PubMed] [Google Scholar]
  • Michéa-Hamzehpour M, Auckenthaler R, Kunz J, Pechère JC (1988) Effect of a single dose of cefotaxime or ceftriaxone on human faecal flora. A double-blind study. Drugs 35:6–11 [CrossRef] [Google Scholar]
  • Derde LP, Cooper BS, Goossens H, et al (2014) Interventions to reduce colonisation and transmission of antimicrobial-resistant bacteria in intensive care units: an interrupted time series study and cluster randomized trial. Lancet Infect Dis 14:31–39 [CrossRef] [PubMed] [Google Scholar]
  • Climo MW, Wong ES (2013) Daily chlorhexidine bathing and hospital-acquired infection. N Engl J Med 368:2332 [CrossRef] [PubMed] [Google Scholar]
  • Milstone AM, Elward A, Song X, et al (2013) Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomized, crossover trial. Lancet 381:1099–1106 [CrossRef] [PubMed] [Google Scholar]
  • van Rijen M, Bonten M, Wenzel R, Kluytmans J (2008) Mupirocin ointment for preventing Staphylococcus aureus infections in nasal carriers. Cochrane Database Syst Rev:CD006216 [PubMed] [Google Scholar]
  • Camus C, Sebille V, Legras A, et al (2014) Mupirocin/chlorexidine to prevent methicillin-resistant Staphylococcus aureus infections: post hoc analysis of a placebo-controlled, randomized trial using mupirocin/chlorhexidine and polymyxin/tobramycin for the prevention of acquired infections in intubated patients. Infection 42:493–502 [PubMed] [Google Scholar]
  • de Smet AM, Kluytmans JA, Cooper BS, et al (2009) Decontamination of the digestive tract and oropharynx in ICU patients. N Engl J Med 360:20–31 [CrossRef] [PubMed] [Google Scholar]
  • Oostdijk EA, Kesecioglu J, Schultz MJ, et al (2014) Effects of decontamination of the oropharynx and intestinal tract on antibiotic resistance in ICUs: a randomized clinical trial. JAMA 312:1429–1437 [CrossRef] [PubMed] [Google Scholar]
  • Huttner B, Haustein T, Uçkay I, et al (2013) Decolonization of intestinal carriage of extended-spectrum β-lactamase-producing Enterobacteriaceae with oral colistin and neomycin: a randomized, double-blind, placebo-controlled trial. J Antimicrob Chemother 68:2375–2382 [PubMed] [Google Scholar]
  • Saidel-Odes L, Polachek H, Peled N, et al (2012) A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol 33:14–19 [CrossRef] [PubMed] [Google Scholar]
  • Camus C, Salomon S, Bouchigny C, et al (2014) Short-term decline in all-cause acquired infections with the routine use of a decontamination regimen combining topical polymyxin, tobramycin, and amphotericin B with mupirocin and chlorhexidine in the ICU: a single-center experience. Crit Care Med 42:1121–1130 [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.