- Dhar A, Castillo L, (2011) Insulin resistance in critical illness. Curr Opin Pediatr 23: 269–274 [CrossRef] [PubMed] [Google Scholar]
- Fahy BG, Sheehy AM, Coursin DB, (2009) Glucose control in the intensive care unit. Crit Care Med 37: 1769–1776 [CrossRef] [PubMed] [Google Scholar]
- Virkamaki A, Puhakainen I, Koivisto V, Vuorinen-Markkola H, Yki-Järvinen H, (1992) Mechanisms of hepatic and peripheral insulin resistance during acute infections in humans. J Clin Endocr Met 74: 673–679 [Google Scholar]
- Weber-Carstens S, Schneider J, Wollersheim T, Assmann A, Bierbrauer J, Marg A, Al Hasani H, Chadt A, Wenzel K, Koch S, Fielitz J, Kleber C, Faust K, Mai K, Spies CD, Luft FC, Boschmann M, Spranger J, Spuler S, (2013) Critical illness myopathy and GLUT4: significance of insulin and muscle contraction. Am J Respir Crit Care Med 187: 387–396 [CrossRef] [PubMed] [Google Scholar]
- Tappy L, Chioléro R, (2007) Substrate utilization in sepsis and multiple organ failure. Crit Care Med 35: S531–S534 [CrossRef] [PubMed] [Google Scholar]
- Gladden LB, (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 1: 5–30 [Google Scholar]
- Marik PE, (2006) Dyslipidemia in critically ill. Crit Care Clin 22: 151–159 [Google Scholar]
- Wolfe RR, (1999) Sepsis as a modulator of adaptation to low and high carbohydrate and low and high fat intakes. Eur J Clin Nutr 53: S136–S142 [CrossRef] [PubMed] [Google Scholar]
- Biolo G, (2013) Protein metabolism and requirements. World Rev Nutr Diet 105: 12–20 [Google Scholar]
- Looijaard WG, Dekker IM, Stapel SN, Girbes AR, Twisk JW, Oudemans-van Straaten HM, Weijs PJ, (2016) Skeletal muscle quality as assessed by CT-derived skeletal muscle density is associated with 6-month mortality in mechanically ventilated critically ill patients. Crit Care 20: 386 [CrossRef] [PubMed] [Google Scholar]
- Cartwright MM, (2004) The metabolic response to stress: a case of complex nutrition support management. Crit Care Nurs Clin North Am 16: 467–487 [CrossRef] [PubMed] [Google Scholar]
- Cynober L, de Bandt JP, (2014) Glutamine in the intensive care unit. Curr Opin Clin Nutr Metab Care 17: 98–104 [PubMed] [Google Scholar]
- Batch BC, Hyland K, Svetkey LP, (2014) Branch chain amino acids: biomarkers of health and disease. Curr Opin Clin Nutr Metab Care 17: 86–89 [PubMed] [Google Scholar]
- Mickiewicz B, Duggan GE, Winston BW, Doig C, Kubes P, Vogel HJ; Alberta Sepsis Network, (2014) Metabolic profiling of serum samples by 1H nuclear magnetic resonance spectroscopy as a potential diagnostic approach for septic shock. Crit Care Med 42: 1140–1149 [CrossRef] [PubMed] [Google Scholar]
- Chioléro R, Revelly JP, Tappy L, (1997) Energy metabolism in sepsis and injury. Nutrition 13: 45S–51S [CrossRef] [PubMed] [Google Scholar]
- Plank LD, Hill GL, (2003) Energy balance in critical illness. Proc Nutr Soc 62: 545–552 [Google Scholar]
- Haugen HA, Chan LN, Li F, (2007) Indirect calorimetry: a practical guide for clinicians. Nutr Clin Pract 22: 377–388 [CrossRef] [PubMed] [Google Scholar]
- Lefrant JY, Hurel D, Cano NJ, Ichai C, Preiser JC, Tamion F; Société française d’anesthésie et de réanimation; Société de réanimation de langue française; Société francophone nutrition clinique et métabolique, (2014) Recommandations formalisées d’experts. Nutrition artificielle en réanimation. Ann Fr Anesth Reanim 33: 202–218 [CrossRef] [PubMed] [Google Scholar]
- Dvir D, Cohen J, Singer P, (2006) Computerized energy balance and complications in critically ill patients: an observational study. Clin Nutr 25: 37–44 [CrossRef] [PubMed] [Google Scholar]
- Villet S, Chiolero RL, Bollmann MD, Revelly JP, Cayeux RNMC, Delarue J, Berger MM, (2005) Negative impact of hypocaloric feeding and energy balance on clinical outcome in ICU patients. Clin Nutr 24: 502–509 [CrossRef] [PubMed] [Google Scholar]
- Alberda C, Gramlich L, Jones N, Jeejeebhoy K, Day AG, Dhaliwal R, Heyland DK, (2009) The relationship between nutritional intake and clinical outcome in critically ill patients. Intensive Care Med 35: 1728–1737 [CrossRef] [PubMed] [Google Scholar]
- Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, Van Cromphaut S, Ingels C, Meersseman P, Muller J, Vlasselaers D, Debaveye Y, Desmet L, Dubois J, Van Assche A, Vanderheyden S, Wilmer A, Van den Berghe G, (2011) Early versus late parenteral nutrition in critically ill adults. N Engl J Med 365: 506–517 [CrossRef] [PubMed] [Google Scholar]
- Arabi YM, Aldawood AS, Haddad SH, Al-Dorzi HM, Tamin HM, Jones G, Mehta S, Al-McIntyre L, Solaiman O, Sakkijha MH, Sadat M, Afesh L Permit Trial Group, (2015) Permissive underfeeding or standard enteral feeding in critically ill adults. N Engl J Med 372: 2398–2408 [CrossRef] [PubMed] [Google Scholar]
- Rugeles S, Villarraga-Angulo LG, Ariza-Gutierrez A, Chaverra-Kornerup S, Lasalvia P, Rosselli D, (2016) High-protein hypocaloric versus normocaloric enteral nutrition in critically ill patients: a randomized clinical trial. J Crit Care 35: 110–114 [Google Scholar]
- Petros S, Horbach M, Seidel F, Weidhase L, (2016) Hypocaloric versus normocaloric nutrition in critically ill patients: a prospective randomized pilot trial. JPEN J Parenter Enteral Nutr 40: 242–249 [CrossRef] [PubMed] [Google Scholar]
- Choi EY, Park DA, Park J, (2015) Calorie intake of enteral nutrition and clinical outcomes in acutely critically ill patients: a metaanalysis of randomized controlled trials. JPEN J Parenter Enteral Nutr 39: 291–300 [CrossRef] [PubMed] [Google Scholar]
- Marik PE, Hooper MH, (2016) Normocaloric versus hypocaloric feeding on the outcomes of ICU patients: a systematic review and meta-analysis. Intensive Care Med 42: 316–323 [CrossRef] [PubMed] [Google Scholar]
- Nicolo M, Heyland DK, Chittams J, Sammarco T, Compher C, (2016) Clinical outcomes related to protein delivery in a critically ill population: a multicenter, multinational observation study. JPEN J Parenter Enteral Nutr 40: 45–51 [CrossRef] [PubMed] [Google Scholar]
- Ishibashi N, Plank LD, Sando K, Hill GL, (1998) Optimal protein requirements during the first 2 weeks after onset of critical illness. Crit Care Med 26: 1529–1535 [CrossRef] [PubMed] [Google Scholar]
- Koretz RL, Avenell A, Lipman TO, Braunschweig CL, Milne AC, (2007) Does enteral nutrition affect clinical outcome? A systematic review of the randomized trials. Am J Gastroenterol 102: 412–429 [Google Scholar]
- Mehta NM, Bechard LJ, Zurakowski D, Duggan CP, Heyland DK, (2015) Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: a multicenter, prospective, cohort study. Am J Clin Nutr 102: 199–206 [CrossRef] [PubMed] [Google Scholar]
- Ferrie S, Allman-Farinelli M, Daley M, Smith K, (2016) Protein requirements in the critically ill: a randomized controlled trial using parenteral nutrition. JPEN J Parenter Enteral Nutr 40: 795–805 [CrossRef] [PubMed] [Google Scholar]
- Weijs PJ, Looijaard WG, Beishuizen A, Girbes AR, Oudemansvan Straaten HM, (2014) Early high protein intake is associated with low mortality and energy overfeeding with high mortality in nonseptic mechanically ventilated critically ill patients. Crit Care 18: 701 [CrossRef] [PubMed] [Google Scholar]
- Puthucheary ZA, Rawal J, McPhail M, Connolly B, Ratnayake G, Chan P, Hopkinson NS, Phadke R, Dew T, Sidhu PS, Velloso C, Seymour J, Agley CC, Selby A, Limb M, Edwards LM, Smith K, Rowlerson A, Rennie MJ, Moxham J, Harridge SD, Hart N, Montgomery HE, (2013) Acute skeletal muscle wasting in critical illness. JAMA 310: 1591–1600 [CrossRef] [PubMed] [Google Scholar]
- Casaer MP, Wilmer A, Hermans G, Wouters PJ, Mesotten D, Van den Berghe G, (2013) Role of disease and macronutrient dose in the randomized controlled EPaNIC trial: a post hoc analysis. Am J Respir Crit Care Med 187: 247–255 [CrossRef] [PubMed] [Google Scholar]
- Marik PE, (2001) Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 29: 2264–2270 [CrossRef] [PubMed] [Google Scholar]
- Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P; Canadian Critical Care Clinical Practice Guidelines Committee, (2003) Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. J Parenter Enteral Nutr 27: 355e73 [Google Scholar]
- Doig GS, Heighes PT, Simpson F, Sweetman EA, Davies AR, (2009) Early enteral nutrition, provided within 24 h of injury or intensive care unit admission, significantly reduces mortality in critically ill patients: a metaanalysis of randomised controlled trials. Intensive Care Med 35: 2018–2027 [CrossRef] [PubMed] [Google Scholar]
- Khalid I, Doshi P, DiGiovine B, (2010) Early enteral nutrition and outcomes of critically ill patients treated with vasopressors and mechanical ventilation. Am J Crit Care 19: 261–268 [Google Scholar]
- Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH, (2002) Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr 26: 174–178 [CrossRef] [PubMed] [Google Scholar]
- Mentec H, Dupont H, Bocchetti M, Cani P, Ponche F, Bleichner G, (2001), Upper digestive intolerance during enteral nutrition in critically ill patients: frequency, risk factors, and complications. Crit Care Med 29: 1955–1961 [CrossRef] [PubMed] [Google Scholar]
- McClave SA, Sexton LK, Spain DA, Adams JL, Owens NA, Sullins MB, Blandford BS, Snider HL, (1999) Enteral tube feeding in the intensive care unit: factors impeding adequate delivery. Crit Care Med 27: 1252–1256 [CrossRef] [PubMed] [Google Scholar]
- Reignier J, Boisramé-Helms J, Brisard L, Lascarrou JB, Ait Hssain A, Anguel N, Argaud L, Asehnoune K, Asfar P, Bellec F, Botoc V, Bretagnol A, Bui HN, Canet E, Da Silva D, Darmon M, Das V, Devaquet J, Djibre M, Ganster F, Garrouste-Orgeas M, Gaudry S, Gontier O, Guérin C, Guidet B, Guitton C, Herbrecht JE, Lacherade JC, Letocart P, Martino F, Maxime V, Mercier E, Mira JP, Nseir S, Piton G, Quenot JP, Richecoeur J, Rigaud JP, Robert R, Rolin N, Schwebel C, Sirodot M, Tinturier F, Thévenin D, Giraudeau B, Le Gouge A; NUTRIREA-2 Trial Investigators; Clinical Research in Intensive Care and Sepsis (CRICS) group, (2018) Enteral versus parenteral early nutrition in ventilated adults with shock: a randomised, controlled, multicentre, open-label, parallelgroup study (NUTRIREA-2). Lancet 391: 133–143 [CrossRef] [PubMed] [Google Scholar]
- Elke G, van Zanten AR, Lemieux M, McCall M, Jeejeebhoy KN, Kott M, Jiang X, Day AG, Heyland DK, (2016) Enteral versus parenteral nutrition in critically ill patients: an updated systematic review and meta-analysis of randomized controlled trials. Crit Care 20: 117 [CrossRef] [PubMed] [Google Scholar]
- Marik PE, Pinsky M, (2003) Death by parenteral nutrition. Intensive Care Med 29: 867–869 [CrossRef] [PubMed] [Google Scholar]
- Jeejeebhoy KN, (2001) Total parenteral nutrition: potion or poison? Am J Clin Nutr 74: 160–163 [CrossRef] [PubMed] [Google Scholar]
- Nardo P, Dupertuis YM, Jetzer J, Kossovsky MP, Darmon P, Pichard C, (2008) Clinical relevance of parenteral nutrition prescription and administration in 200 hospitalized patients: a quality control study. Clin Nutr 27: 858–864 [CrossRef] [PubMed] [Google Scholar]
- Simpson F, Doig GS, (2005) Parenteral versus enteral nutrition in the critically ill patient: a meta-analysis of trials using the intention to treat principle. Intensive Care Med 31: 12–23 [CrossRef] [PubMed] [Google Scholar]
- Harvey SE, Parrot F, Harrison DA, Bear DE, Segaran E, Beale R, Bellingan G, Leonard R, Mythen MG, Rowan KM; CALORIES Trial Investigators, (2014) Trial of the route of early nutritional support in critically ill adults. N Engl J Med 371: 1673–1684 [CrossRef] [PubMed] [Google Scholar]
- Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, Thibault R, Pichard C, (2012) Optimization of energy provision with supplemental parenteral nutrition (SPN) improves the clinical outcome of critically ill patients: a randomized controlled clinical trial. Lancet 381: 385–393 [CrossRef] [PubMed] [Google Scholar]
- Singer P, Anbar R, Cohen J, Shapiro H, Shalita-Chesner M, Lev S, Grozovski E, Theilla M, Frishman S, Madar Z, (2011) The tight calorie control study (TICACOS): a prospective, randomized, controlled pilot study of nutritional support in critically ill patients. Intensive Care Med 37: 601–609 [CrossRef] [PubMed] [Google Scholar]
- Heyland D, Muscedere J, Wischmeyer PE, Cook D, Jones G, Albert M, Elke G, Berger MM, Day AG; Canadian Critical Care Trials Group, (2013) A randomized trial of glutamine and antioxidants in critically ill patients. N Engl J Med 368: 1489–1497 [CrossRef] [PubMed] [Google Scholar]
- van Zanten AR, Sztark F, Kaisers UX, Zielmann S, Felbinger TW, Sablotzki AR, De Waele JJ, Timsit JF, Honing ML, Keh D, Vincent JL, Zazzo JF, Fijn HB, Petit L, Preiser JC, van Horssen PJ, Hofman Z, (2014) High-protein enteral nutrition enriched with immune-modulating nutrients versus standard high-protein enteral nutrition and nosocomial infections in the ICU: a randomized clinical trial. JAMA 312: 514–524 [CrossRef] [PubMed] [Google Scholar]
- Rodas PC, Rooyackers O, Hebert C, Norberg Å, Wernerman J, (2012) Glutamine and glutathione at ICU admission in relation to outcome. Clin Sci (Lond) 122: 591–597 [CrossRef] [PubMed] [Google Scholar]
- Wischmeyer PE, Dhaliwal R, McCall M, Ziegler TR, Heyland DK, (2014) Parenteral glutamine supplementation in critical illness: a systematic review. Crit Care 18: R76 [CrossRef] [PubMed] [Google Scholar]
- Manzanares W, Langlois PL, Dhaliwal R, Lemieux M, Heyland DK, (2015) Intravenous fish oil lipid emulsions in critically ill patients: an updated systematic review and metaanalysis. Crit Care 19: 167 [CrossRef] [PubMed] [Google Scholar]
Free Access
Issue |
Méd. Intensive Réa.
Volume 27, Number 6, Novembre 2018
Néphrologie et métabolisme
|
|
---|---|---|
Page(s) | 501 - 509 | |
Section | Mise au point / Update | |
DOI | https://doi.org/10.3166/rea-2018-0068 | |
Published online | 16 October 2018 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.