Free Access
Issue
Méd. Intensive Réa.
Volume 27, Number 2, Mars 2018
Cardiovasculaire
Page(s) 143 - 142
Section Mise au point / Update
DOI https://doi.org/10.3166/rea-2018-0018
Published online 10 May 2018
  • 1994) Décret sécurité — 8/12/1994. Sfar — Société française d’anesthésie et de réanimation [Google Scholar]
  • Whitaker DK, (2011) Time for capnography — everywhere. Anaesthesia 66: 544–549 [CrossRef] [PubMed] [Google Scholar]
  • Soltner C, Huztinger J, Beydon L, (2003) Monitorage du CO2 expiré. Réanimation 13: 62–70 [CrossRef] [Google Scholar]
  • Kodali BS, (2013) Capnography outside the operating rooms. Anesthesiology 118: 192–201 [CrossRef] [PubMed] [Google Scholar]
  • Bhavani-Shankar K, Kumar AY, Moseley HS, Ahyee-Hallsworth R, (1995) Terminology and the current limitations of time capnography: a brief review. J Clin Monit 11: 175–182 [CrossRef] [PubMed] [Google Scholar]
  • Liu Z, Vargas F, Stansbury D, Sasse SA, Light RW, (1995) Comparison of the end-tidal arterial PCO2 gradient during exercise in normal subjects and in patients with severe COPD. Chest 107: 1218–1224 [CrossRef] [PubMed] [Google Scholar]
  • Tusman G, Sipmann FS, Bohm SH, (2012) Rationale of dead space measurement by volumetric capnography. Anesth Analg 114: 866–874 [CrossRef] [PubMed] [Google Scholar]
  • Bohr C, (1891) Ueber die Lungenathmung. Skand Arch Für Physiol 2: 236–268 [CrossRef] [Google Scholar]
  • Fowler WS, (1948) Lung function studies; the respiratory dead space. Am J Physiol 154: 405–416 [Google Scholar]
  • Tusman G, Sipmann FS, Borges JB, Hedenstierna G, Bohm SH, (2011) Validation of Bohr dead space measured by volumetric capnography. Intensive Care Med 37: 870–874 [CrossRef] [PubMed] [Google Scholar]
  • Duwat A, Turbelin A, Petiot S, Hubert V, Deransy R, Mahjoub Y, Dupont H, (2014) Enquête nationale sur l’intubation difficile dans les services de réanimation français. Ann Fr Anesth Reanim 33: 297–303 [CrossRef] [PubMed] [Google Scholar]
  • Quintard H, l’Her E, Pottecher J, Adnet F, Constantin JM, De Jong A, Diemunsch P, Fesseau R, Freynet A, Girault C, Guitton C, Hamonic Y, Maury E, Mekontso-Dessap A, Michel F, Nolent P, Perbet S, Prat G, Roquilly A, Tazarourte K, Terzi N, Thille AW, Alves M, Gayat E, Donetti L, (2017) Intubation and extubation of the ICU patient. Anaesth Crit Care Pain Med 36: 327–341 [CrossRef] [PubMed] [Google Scholar]
  • Li J, (2001) Capnography alone is imperfect for endotracheal tube placement confirmation during emergency intubation. J Emerg Med 20: 223–229 [CrossRef] [PubMed] [Google Scholar]
  • Walsh BK, Crotwell DN, Resrtrepo RD, (2011) Capnography/Capnometry during mechanical ventilation: 2011. Respir Care 56: 503–509 [CrossRef] [PubMed] [Google Scholar]
  • McGrath BA, (2014) The (Correct) use of capnography will reduce airway complications in intensive care. Br J Anaesth 113: 521 [CrossRef] [PubMed] [Google Scholar]
  • Cook TM, Woodall N, Harper J, Benger J, Fourth National Audit Project, (2011) Major complications of airway management in the UK: results of the Fourth National Audit Project of the Royal College of Anaesthetists and the Difficult Airway Society. Part 2: intensive care and emergency departments. Br J Anaesth 106: 632–642 [CrossRef] [PubMed] [Google Scholar]
  • Wall BF, Magee K, Campbell SG, Zed PJ, (2017) Capnography versus standard monitoring for emergency department procedural sedation and analgesia. Cochrane Database Syst Rev 3: CD010698 [PubMed] [Google Scholar]
  • Razi E, Moosavi GA, Omidi K, Khakpour Saebi A, Razi A, (2012) Correlation of end-tidal carbon dioxide with arterial carbon dioxide in mechanically ventilated patients. Arch Trauma Res 1: 58–62 [CrossRef] [PubMed] [Google Scholar]
  • Lee SW, Hong YS, Han C, Kim SJ, Moon SW, Shin JH, Baek KJ, (2009) Concordance of end-tidal carbon dioxide and arterial carbon dioxide in severe traumatic brain injury. J Trauma 67: 526–530 [CrossRef] [PubMed] [Google Scholar]
  • Kerr ME, Zempsky J, Sereika S, Orndoff P, Rudy EB, (1996) Relationship between arterial carbon dioxide and end-tidal carbon dioxide in mechanically ventilated adults with severe head trauma. Crit Care Med 24: 785–790 [CrossRef] [PubMed] [Google Scholar]
  • Vivien B, Amour J, Nicolas-Robin A, Vesque M, Langeron O, Coriat P, Riou B, (2007) An evaluation of capnography monitoring during the apnoea test in brain-dead patients. Eur J Anaesthesiol 24: 868–875 [CrossRef] [PubMed] [Google Scholar]
  • Doorduin J, Nollet JL, Vugts MPAJ, Roesthuis LH, Akankan F, van der Hoeven JG, van Hees HW, Heunks LM, (2016) Assessment of dead-space ventilation in patients with acute respiratory distress syndrome: a prospective observational study. Crit Care Lond Engl 20: 121 [CrossRef] [Google Scholar]
  • Raurich JM, Vilar M, Colomar A, Ibáñez J, Ayestarán I, Pérez-Bárcena J, Llompart-Pou JA, (2010) Prognostic value of the pulmonary dead-space fraction during the early and intermediate phases of acute respiratory distress syndrome. Respir Care 55: 282–287 [PubMed] [Google Scholar]
  • Kallet RH, Alonso JA, Pittet JF, Matthay MA, (2004) Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. Respir Care 49: 1008–1014 [PubMed] [Google Scholar]
  • Suter PM, Fairley B, Isenberg MD, (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292: 284–289 [CrossRef] [PubMed] [Google Scholar]
  • Blanch L, Lucangelo U, Lopez-Aguilar J, Fernandez R, Romero PV, (1999) Volumetric capnography in patients with acute lung injury: effects of positive end-expiratory pressure. Eur Respir J 13: 1048–1054 [CrossRef] [PubMed] [Google Scholar]
  • Bian W, Chen W, Chao Y, Wang L, Li L, Guan J, Zang X, Zhen J, Sheng B, Zhu X, (2017) Application of dead space fraction to titrate optimal positive end-expiratory pressure in an ARDS swine model. Exp Ther Med 13: 1572–1577 [CrossRef] [PubMed] [Google Scholar]
  • Saura P, Blanch L, Lucangelo U, Fernández R, Mestre J, Artigas A, (1996) Use of capnography to detect hypercapnic episodes during weaning from mechanical ventilation. Intensive Care Med 22: 374–381 [CrossRef] [PubMed] [Google Scholar]
  • Withington DE, Ramsay JG, Saoud AT, Bilodeau J, (1991) Weaning from ventilation after cardiopulmonary bypass: evaluation of a non-invasive technique. Can J Anaesth J Can Anesth 38: 15–19 [CrossRef] [Google Scholar]
  • Morley TF, Giaimo J, Maroszan E, Bermingham J, Gordon R, Griesback R, Zappasodi SJ, Giudice JC, (1993) Use of capnography for assessment of the adequacy of alveolar ventilation during weaning from mechanical ventilation. Am Rev Respir Dis 148: 339–344 [CrossRef] [PubMed] [Google Scholar]
  • Lellouche F, Mancebo J, Jolliet P, Roeseler J, Schortgen F, Dojat M, Cabello B, Bouadma L, Rodriguez P, Maggiore S, Reynaert M, Mersmann S, Brochard L, (2006) A multicenter randomized trial of computer-driven protocolized weaning from mechanical ventilation. Am J Respir Crit Care Med 174: 894–900 [CrossRef] [PubMed] [Google Scholar]
  • Burns KEA, Lellouche F, Nisenbaum R, Lessard MR, Friedrich JO, (2014) Automated weaning and SBT systems versus non-automated weaning strategies for weaning time in invasively ventilated critically ill adults. Cochrane Database Syst Rev 9: CD008638 [Google Scholar]
  • Nik Hisamuddin NAR, Rashidi A, Chew KS, Kamaruddin J, Idzwan Z, Teo AH, (2009) Correlations between capnographic waveforms and peak flow meter measurement in emergency department management of asthma. Int J Emerg Med 2: 83–89 [CrossRef] [PubMed] [Google Scholar]
  • Konstantinides SV, Torbicki A, Agnelli G, Danchin N, Fitzmaurice D, Galiè N, Gibbs JSR, Huisman MV, Humbert M, Kucher N, Lang I, Lankeit M, Lekakis J, Maack C, Mayer E, Meneveau N, Perrier A, Pruszczyk P, Rasmussen LH, Schindler TH, Svitil P, Vonk Noordegraaf A, Zamorano JL,Zompatori M, Task Force for the Diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC), (2014) 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism. Eur Heart J 35: 3033–3069, 3069a–3069k [CrossRef] [PubMed] [Google Scholar]
  • Kline JA, Meek S, Boudrow D, Warner D, Colucciello S, (1997) Use of the alveolar dead space fraction (Vd/Vt) and plasma D-dimers to exclude acute pulmonary embolism in ambulatory patients. Acad Emerg Med 4: 856–863 [CrossRef] [PubMed] [Google Scholar]
  • Verschuren F, Sanchez O, Righini M, Heinonen E, Le Gal G, Meyer G, Perrier A, Thys F, (2010) Volumetric or time-based capnography for excluding pulmonary embolism in outpatients? J Thromb Haemost 8: 60–67 [CrossRef] [PubMed] [Google Scholar]
  • Manara A, D’hoore W, Thys F, (2013) Capnography as a diagnostic tool for pulmonary embolism: a meta-analysis. Ann Emerg Med 62: 584–591 [CrossRef] [PubMed] [Google Scholar]
  • Wiegand UK, Kurowski V, Giannitsis E, Katus HA, Djonlagic H, (2000) Effectiveness of end-tidal carbon dioxide tension for monitoring thrombolytic therapy in acute pulmonary embolism. Crit Care Med 28: 3588–3592 [CrossRef] [PubMed] [Google Scholar]
  • Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, Bossaert LL, Brett SJ, Chamberlain D, Caen AR de, Deakin CD, Finn JC, Gräsner JT, Hazinski MF, Iwami T, Koster RW, Lim SH, Ma MHM, McNally BF, Morley PT, Morrison LJ, Monsieurs KG, Montgomery W, Nichol G, Okada K, Ong MEH, Travers AH, Nolan JP, (2015) Cardiac Arrest and Cardiopulmonary Resuscitation Outcome Reports: Update of the Utstein Resuscitation Registry Templates for Out-of-Hospital Cardiac Arrest: A Statement for Healthcare Professionals From a Task Force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Circulation 132: 1286–1300 [CrossRef] [PubMed] [Google Scholar]
  • Touma O, Davies M, (2013) The prognostic value of end tidal carbon dioxide during cardiac arrest: a systematic review. Resuscitation 84: 1470–1479 [CrossRef] [PubMed] [Google Scholar]
  • Hartmann SM, Farris RWD, Di Gennaro JL, Roberts JS, (2015) Systematic review and meta-analysis of end-tidal carbon dioxide values associated with return of spontaneous circulation during cardiopulmonary resuscitation. J Intensive Care Med 30: 426–435 [CrossRef] [PubMed] [Google Scholar]
  • Lah K, Križmarić M, Grmec S, (2011) The dynamic pattern of end-tidal carbon dioxide during cardiopulmonary resuscitation: difference between asphyxial cardiac arrest and ventricular fibrillation/pulseless ventricular tachycardia cardiac arrest. Crit Care Lond Engl 15: R13 [CrossRef] [Google Scholar]
  • Sheak KR, Wiebe DJ, Leary M, Babaeizadeh S, Yuen TC, Zive D, Owens PC, Edelson DP, Daya MR, Idris AH, Abella BS, (2015) Quantitative relationship between end-tidal carbon dioxide and CPR quality during both in-hospital and out-of-hospital cardiac arrest. Resuscitation 89: 149–154 [CrossRef] [PubMed] [Google Scholar]
  • Brinkrolf P, Borowski M, Metelmann C, Lukas RP, Pidde-Küllenberg L, Bohn A, (2018) Predicting ROSC in out-of-hospital cardiac arrest using expiratory carbon dioxide concentration: is trend-detection instead of absolute threshold values the key? Resuscitation 122: 19–24 [CrossRef] [PubMed] [Google Scholar]
  • Lee BK, Jeung KW, Lee HY, Lee SJ, Jung YH, Lee WK, Heo T, Min YI, (2014) Association between mean arterial blood gas tension and outcome in cardiac arrest patients treated with therapeutic hypothermia. Am J Emerg Med 32: 55–60 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.