Free Access
Méd. Intensive Réa.
Volume 26, Number 6, Novembre 2017
Néphrologie et métabolisme
Page(s) 464 - 471
Section Mise au point / Update
Published online 19 October 2017
  • Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, Glass P, Lipman J, Liu B, McArthur C, McGuinness S, Rajbhandari D, Taylor CB, Webb SA; CHEST Investigators; Australian and New Zealand Intensive Care Society Clinical Trials Group, (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med 367: 1901–1911 [CrossRef] [PubMed] [Google Scholar]
  • Vincent JL, De Backer D, (2014) Circulatory shock. N Engl J Med 370: 583 [Google Scholar]
  • Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP, (2017) Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med 43: 304–377 [CrossRef] [PubMed] [Google Scholar]
  • McIntyre LA, Hebert PC, Fergusson D, Cook DJ, Aziz A; Canadian Critical Care Trials Group, (2007) A survey of Canadian intensivists’ resuscitation practices in early septic shock. Crit Care 11: R74 [CrossRef] [PubMed] [Google Scholar]
  • Finfer S, Liu B, Taylor C, Bellomo R, Billot L, Cook D, Du B, McArthur C, Myburgh J; SAFE TRIPS Investigators, (2010) Resuscitation fluid use in critically ill adults: an international cross-sectional study in 391 intensive care units. Crit Care 14: R185 [CrossRef] [PubMed] [Google Scholar]
  • Brun-Buisson C, Doyon F, Carlet J, Dellamonica P, Gouin F, Lepoutre A, Mercier JC, Offenstadt G, Régnier B, (1995) Incidence, risk factors, and outcome of severe sepsis and septic shock in adults. A multicenter prospective study in intensive care units. French ICU Group for Severe Sepsis. JAMA 274: 968–974 [CrossRef] [PubMed] [Google Scholar]
  • Quenot JP, Binquet C, Kara F, Martinet O, Ganster F, Navellou JC, Castelain V, Barraud D, Cousson J, Louis G, Perez P, Kuteifan K, Noirot A, Badie J, Mezher C, Lessire H, Pavon A, (2013) The epidemiology of septic shock in French intensive care units: the prospective multicenter cohort EPISS study. Crit Care 17: R65 [CrossRef] [PubMed] [Google Scholar]
  • Perel P, Roberts I, (2007) Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev 4: CD000567 [Google Scholar]
  • Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R; SAFE Study Investigators, (2004) A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350: 2247–2256 [CrossRef] [PubMed] [Google Scholar]
  • Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, Fanizza C, Caspani L, Faenza S, Grasselli G, Iapichino G, Antonelli M, Parrini V, Fiore G, Latini R, Gattinoni L; ALBIOS Study Investigators, (2014) Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med 370: 1412–1421 [CrossRef] [PubMed] [Google Scholar]
  • Schortgen F, Lacherade JC, Bruneel F, Cattaneo I, Hemery F, Lemaire F, Brochard L, (2001) Effects of hydroxyethylstarch and gelatin on renal function in severe sepsis: a multicentre randomised study. Lancet 357: 911–916 [CrossRef] [PubMed] [Google Scholar]
  • Ichai C, Vinsonneau C, Souweine B, Canet E, Clec'h C, Constantin JM, Darmon M, Duranteau J, Gaillot T, Garnier A, Jacob L, Joannes-Boyau O, Juillard L, Journois D, Lautrette A, Müller L, Legrand M, Lerolle N, Rimmelé T, Rondeau E, Tamion F, Velly L, (2015) Acute kidney injury in the perioperative period and in ICU (except for the extra-renal removal therapies). Recommendations of the SFAR-SRLF in collaboration with the societies GFRUP, SFN. Available at: (Access date: 26 September 2017) [Google Scholar]
  • Aizawa Y, Shibata A, Ohmori T, Kamimura A, Takahashi S, Hirasawa Y, (1978) Hemodynamic effects of acetate in man. J Dial 2: 235–242 [CrossRef] [PubMed] [Google Scholar]
  • Wu BU, Hwang JQ, Gardner TH, Repas K, Delee R, Yu S, Smith B, Banks PA, Conwell DL, (2011) Lactated Ringer's solution reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clin Gastroenterol Hepatol 9: 710–717 e1 [CrossRef] [PubMed] [Google Scholar]
  • Hadimioglu N, Saadawy I, Saglam T, Ertug Z, Dinckan A, (2008) The effect of different crystalloid solutions on acid-base balance and early kidney function after kidney transplantation. Anesth Analg 107: 264–269 [CrossRef] [PubMed] [Google Scholar]
  • Shin WJ, Kim YK, Bang JY, Cho SK, Han SM, Hwang GS, (2011) Lactate and liver function tests after living donor right hepatectomy: a comparison of solutions with and without lactate. Acta Anaesthesiol Scand 55: 558–564 [CrossRef] [PubMed] [Google Scholar]
  • O’Malley CM, Frumento RJ, Hardy MA, Benvenisty AI, Brentjens TE, Mercer JS, Bennett-Guerrero E, (2005) A randomized, double-blind comparison of lactated Ringer's solution and 0.9% NaCl during renal transplantation. Anesth Analg 100: 1518–1524, table of contents [CrossRef] [PubMed] [Google Scholar]
  • Williams EL, Hildebrand KL, McCormick SA, Bedel MJ, (1999) The effect of intravenous lactated Ringer’s solution versus 0.9% sodium chloride solution on serum osmolality in human volunteers. Anesth Analg 88: 999–1003 [PubMed] [Google Scholar]
  • Hammond NE, Taylor C, Saxena M, Liu B, Finfer S, Glass P, Seppelt I, Willenberg L, Myburgh J, (2015) Resuscitation fluid use in Australian and New Zealand Intensive Care Units between 2007 and 2013. Intensive Care Med 41: 1611–1619 [CrossRef] [PubMed] [Google Scholar]
  • Adrogue HJ, Madias NE, (1998) Management of life-threatening acid-base disorders. First of two parts. N Engl J Med 338: 26–34 [CrossRef] [PubMed] [Google Scholar]
  • Stewart PA, (1978) Independent and dependent variables of acid-base control. Respir Physiol 33: 9–26 [CrossRef] [PubMed] [Google Scholar]
  • Morgan TJ, Venkatesh B, Hall J, (2002) Crystalloid strong ion difference determines metabolic acid-base change during in vitro hemodilution. Crit Care Med 30: 157–160 [CrossRef] [PubMed] [Google Scholar]
  • Langer T, Carlesso E, Gattinoni L, (2012) The Hamburger effect: beyond chloride shift. Am J Respir Crit Care Med 185: A3168 [Google Scholar]
  • Gattinoni L, Carlesso E, Maiocchi G, Polli F, Cadringher P, (2009) Dilutional acidosis: where do the protons come from? Intensive Care Med 35: 2033–2043 [CrossRef] [PubMed] [Google Scholar]
  • Orbegozo Cortes D, Rayo Bonor A, Vincent JL, (2014) Isotonic crystalloid solutions: a structured review of the literature. Br J Anaesth 112: 968–981 [CrossRef] [PubMed] [Google Scholar]
  • Waters JH, Bernstein CA, (2000) Dilutional acidosis following hetastarch or albumin in healthy volunteers. Anesthesiology 93: 1184–1187 [CrossRef] [PubMed] [Google Scholar]
  • Scheingraber S, Rehm M, Sehmisch C, Finsterer U, (1999) Rapid saline infusion produces hyperchloremic acidosis in patients undergoing gynecologic surgery. Anesthesiology 90: 1265–1270 [CrossRef] [PubMed] [Google Scholar]
  • Moviat M, van Haren F, van der Hoeven H, (2003) Conventional or physicochemical approach in intensive care unit patients with metabolic acidosis. Crit Care 7: R41–R45 [CrossRef] [PubMed] [Google Scholar]
  • Noritomi DT, Soriano FG, Kellum JA, Cappi SB, Biselli PJ, Libório AB, Park M, (2009) Metabolic acidosis in patients with severe sepsis and septic shock: a longitudinal quantitative study. Crit Care Med 37: 2733–2739 [CrossRef] [PubMed] [Google Scholar]
  • Kellum JA, Bellomo R, Kramer DJ, Pinsky MR, (1998) Etiology of metabolic acidosis during saline resuscitation in endotoxemia. Shock 9: 364–368 [CrossRef] [PubMed] [Google Scholar]
  • Wilcox CS, (1983) Regulation of renal blood flow by plasma chloride. J Clin Invest 71: 726–735 [CrossRef] [PubMed] [Google Scholar]
  • Chowdhury AH, Cox EF, Francis ST, Lobo DN, (2012) A randomized, controlled, double-blind crossover study on the effects of 2-L infusions of 0.9% saline and Plasma-Lyte® 148 on renal blood flow velocity and renal cortical tissue perfusion in healthy volunteers. Ann Surg 256: 18–24 [CrossRef] [PubMed] [Google Scholar]
  • Bullivant EM, Wilcox CS, Welch WJ, (1989) Intrarenal vasoconstriction during hyperchloremia: role of thromboxane. Am J Physiol 256: F152–F157 [Google Scholar]
  • Tanaka M, Schmidlin O, Olson JL, Yi SL, Morris RC, (2001) Chloride-sensitive renal microangiopathy in the stroke-prone spontaneously hypertensive rat. Kidney Int 59: 1066–1076 [CrossRef] [PubMed] [Google Scholar]
  • Schnermann J, Ploth DW, Hermle M, (1976) Activation of tubulo-glomerular feedback by chloride transport. Pflugers Arch 362: 229–240 [CrossRef] [PubMed] [Google Scholar]
  • McMenamy RH, (1964) A proposed mechanism for the Bohr effect. J Mol Biol 9: 781–784 [CrossRef] [PubMed] [Google Scholar]
  • Handy JM, Soni N, (2008) Physiological effects of hyperchloraemia and acidosis. Br J Anaesth 101: 141–150 [CrossRef] [PubMed] [Google Scholar]
  • Zhou F, Peng ZY, Bishop JV, Cove ME, Singbartl K, Kellum JA, (2014) Effects of fluid resuscitation with 0.9% saline versus a balanced electrolyte solution on acute kidney injury in a rat model of sepsis*. Crit Care Med 42: e270–e278 [CrossRef] [PubMed] [Google Scholar]
  • Yegenaga I, Tuglular S, Ari E, Etiler N, Baykara N, Torlak S, Acar S, Akbas T, Toker K, Solak ZM, (2010) Evaluation of sepsis/systemic inflammatory response syndrome, acute kidney injury, and RIFLE criteria in two tertiary hospital intensive care units in Turkey. Nephron Clin Pract 115: c276–c282 [CrossRef] [PubMed] [Google Scholar]
  • Cartin-Ceba R, Kashiouris M, Plataki M, Kor DJ, Gajic O, Casey ET, (2012) Risk factors for development of acute kidney injury in critically ill patients: a systematic review and meta-analysis of observational studies. Crit Care Res Pract 2012: 691013 [PubMed] [Google Scholar]
  • Olivier PY, Beloncle F, Seegers V, Tabka M, Renou de La Bourdonnaye M, Mercat A, Cales P, Henrion D, Radermacher P, Piquilloud L, Lerolle N, Asfar P, (2017) Assessment of renal hemodynamic toxicity of fluid challenge with 0.9% NaCl compared to balanced crystalloid (Plasma-Lyte®) in a rat model with severe sepsis. Ann Intensive Care 7: 66 [CrossRef] [PubMed] [Google Scholar]
  • Kellum JA, Song M, Li J, (2004) Lactic and hydrochloric acids induce different patterns of inflammatory response in LPS-stimulated RAW 264.7 cells. Am J Physiol Regul Integr Comp Physiol 286: R686–R692 [CrossRef] [PubMed] [Google Scholar]
  • Kellum JA, Song M, Venkataraman R, (2004) Effects of hyperchloremic acidosis on arterial pressure and circulating inflammatory molecules in experimental sepsis. Chest 125: 243–248 [CrossRef] [PubMed] [Google Scholar]
  • Neyra JA, Canepa-Escaro F, Li X, Manllo J, Adams-Huet B, Yee J, Yessayan L; Acute Kidney Injury in Critical Illness Study Group, (2015) Association of hyperchloremia with hospital mortality in critically ill septic patients. Crit Care Med 43: 1938–1944 [CrossRef] [PubMed] [Google Scholar]
  • Zhang Z, Xu X, Fan H, Li D, Deng H, (2013) Higher serum chloride concentrations are associated with acute kidney injury in unselected critically ill patients. BMC Nephrol 14: 235 [CrossRef] [PubMed] [Google Scholar]
  • Bucher HC, Guyatt GH, Cook DJ, Holbrook A, McAlister FA, (1999) Users’ guides to the medical literature: XIX. Applying clinical trial results. A. How to use an article measuring the effect of an intervention on surrogate end points. Evidence-Based Medicine Working Group. JAMA 282: 771–778 [CrossRef] [PubMed] [Google Scholar]
  • Ioannou N, Terblanche M, (2011) Surrogate end points in critical illness research: some way to go yet. Crit Care Med 39: 2561–2562 [CrossRef] [PubMed] [Google Scholar]
  • Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M, (2012) Association between a chloride-liberal versus chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA 308: 1566–1572 [CrossRef] [PubMed] [Google Scholar]
  • Yunos NM, Kim IB, Bellomo R, Bailey M, Ho L, Story D, Gutteridge GA, Hart GK, (2011) The biochemical effects of restricting chloride-rich fluids in intensive care. Crit Care Med 39: 2419–2424 [CrossRef] [PubMed] [Google Scholar]
  • Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, McGuinness S, Mehrtens J, Myburgh J, Psirides A, Reddy S, Bellomo R; SPLIT Investigators; ANZICS CTG, (2015) Effect of a buffered crystalloid solution versus saline on acute kidney injury among patients in the intensive care unit: the SPLIT randomized clinical trial. JAMA 314: 1701–1710 [CrossRef] [PubMed] [Google Scholar]
  • Semler MW, Wanderer JP, Ehrenfeld JM, Stollings JL, Self WH, Siew ED, Wang L, Byrne DW, Shaw AD, Bernard GR, Rice TW; SALT Investigators and the Pragmatic Critical Care Research Group; SALT Investigators, (2017) Balanced crystalloids versus saline in the intensive care unit. The SALT randomized trial. Am J Respir Crit Care Med 195: 1362–1372 [CrossRef] [PubMed] [Google Scholar]
  • Krajewski ML, Raghunathan K, Paluszkiewicz SM, Schermer CR, Shaw AD, (2015) Meta-analysis of high- versus low-chloride content in perioperative and critical care fluid resuscitation. Br J Surg 102: 24–36 [CrossRef] [PubMed] [Google Scholar]
  • Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M, (2015) Chloride-liberal versus chloride-restrictive intravenous fluid administration and acute kidney injury: an extended analysis. Intensive Care Med 41: 257–264 [CrossRef] [PubMed] [Google Scholar]
  • Raghunathan K, Shaw A, Nathanson B, Stürmer T, Brookhart A, Stefan MS, Setoguchi S, Beadles C, Lindenauer PK, (2014) Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis*. Crit Care Med 42: 1585–1591 [CrossRef] [PubMed] [Google Scholar]
  • Shaw AD, Schermer CR, Lobo DN, Munson SH, Khangulov V, Hayashida DK, Kellum JA, (2015) Impact of intravenous fluid composition on outcomes in patients with systemic inflammatory response syndrome. Crit Care 19: 334 [CrossRef] [PubMed] [Google Scholar]
  • Rochwerg B, Alhazzani W, Gibson A, Ribic CM, Sindi A, Heels-Ansdell D, Thabane L, Fox-Robichaud A, Mbuagbaw L, Szczeklik W, Alshamsi F, Altayyar S, Ip W, Li G, Wang M, Włudarczyk A, Zhou Q, Annane D, Cook DJ, Jaeschke R, Guyatt GH; FISSH Group (Fluids in Sepsis and Septic Shock), (2015) Fluid type and the use of renal replacement therapy in sepsis: a systematic review and network meta-analysis. Intensive Care Med 41: 1561–1571 [CrossRef] [PubMed] [Google Scholar]
  • Semler MW, Rice TW, (2016) Saline is not the first choice for crystalloid resuscitation fluids. Crit Care Med 44: 1541–4 [CrossRef] [PubMed] [Google Scholar]
  • Self WH, Semler MW, Wanderer JP, Ehrenfeld JM, Byrne DW, Wang L, Atchison L, Felbinger M, Jones ID, Russ S, Shaw AD, Bernard GR, Rice TW, (2017) Saline versus balanced crystalloids for intravenous fluid therapy in the emergency department: study protocol for a cluster-randomized, multiple-crossover trial. Trials 18: 178 [CrossRef] [PubMed] [Google Scholar]
  • Semler MW, Self WH, Wang L, Byrne DW, Wanderer JP, Ehrenfeld JM, Stollings JL, Kumar AB, Hernandez A, Guillamondegui OD, May AK, Siew ED, Shaw AD, Bernard GR, Rice TW; Isotonic Solutions and Major Adverse Renal Events Trial (SMART) Investigators; Pragmatic Critical Care Research Group, (2017) Balanced crystalloids versus saline in the intensive care unit: study protocol for a cluster-randomized, multiple-crossover trial. Trials 18: 129 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.