Free Access
Issue
Méd. Intensive Réa.
Volume 26, Number 2, Mars 2017
Cardiovasculaire
Page(s) 102 - 110
Section Mise au point / Update
DOI https://doi.org/10.1007/s13546-017-1258-4
Published online 26 January 2017
  • Cecconi M, De Backer D, Antonelli M, Beale R, Bakker J, Hofer C, Jaeschke R, Mebazaa A, Pinsky MR, Teboul JL, Vincent JL, Rhodes A, (2014) Consensus on circulatory shock and hemodynamic monitoring. Task force on the European Society of Intensive Care Medicine. Intensive Care Med 40: 1795–815 [CrossRef] [PubMed] [Google Scholar]
  • Mizock BA, Falk JL, (1992) Lactic acidosis in critical illness. Crit Care Med 20: 80–93 [CrossRef] [PubMed] [Google Scholar]
  • West JB, (1990) Gas transport to the periphery: how gases are moved to the peripheral tissues? In: West JB (ed) Respiratory physiology. The essential. 4th ed. Williams & Wilkins, Baltimore, pp 69–85 [Google Scholar]
  • Supuran CT, (2008) Carbonic anhydrases — an overview. Curr Pharm Des 14: 603–14 [CrossRef] [PubMed] [Google Scholar]
  • Teboul JL, Scheeren T, (2016) Understanding the Haldane effect. Intensive Care Med [in press] [Google Scholar]
  • Durkin R, Gergits MA, Reed JF 3rd, Fitzgibbons J, (1993) The relationship between the arteriovenous carbon dioxide gradient and cardiac index. J Crit Care 8: 217–21 [CrossRef] [PubMed] [Google Scholar]
  • Lamia B, Monnet X, Teboul JL, (2006) Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol 72: 597–604 [PubMed] [Google Scholar]
  • Groeneveld AB, (1998) Interpreting the venous-arterial PCO2 difference. Crit Care Med 26 :979–80 [CrossRef] [PubMed] [Google Scholar]
  • Gutierrez G, (2004) A mathematical model of tissue-blood carbon dioxide exchange during hypoxia. Am J Respir Crit Care Med 169: 525–33 [CrossRef] [PubMed] [Google Scholar]
  • Rackow EC, Astiz ME, Mecher CE, Weil MH, (1994) Increased venous-arterial carbon dioxide tension difference during severe sepsis in rats. Crit Care Med 22: 121–5 [CrossRef] [PubMed] [Google Scholar]
  • Benjamin E, (1994) Venous hypercarbia: a nonspecific marker of hypoperfusion. Crit Care Med 22: 9–10 [CrossRef] [PubMed] [Google Scholar]
  • Steedman DJ, Robertson CE, (1992) Acid base changes in arterial and central venous blood during cardiopulmonary resuscitation. Arch Emerg Med 9: 169–76 [CrossRef] [PubMed] [Google Scholar]
  • Zhang H, Vincent JL, (1993) Arteriovenous differences in PCO2 and pH are good indicators of critical hypoperfusion. Am Rev Respir Dis 148: 867–71 [CrossRef] [PubMed] [Google Scholar]
  • Van der Linden P, Rausin I, Deltell A, Bekrar Y, Gilbart E, Bakker J, Vincent JL, (1995) Detection of tissue hypoxia by arteriovenous gradient for PCO2 and pH in anesthetized dogs during progressive hemorrhage. Anesth Analg 80: 269–75 [Google Scholar]
  • Bowles SA, Schlichtig R, Kramer DJ, Klions HA, (1992) Arteriovenous pH and partial pressure of carbon dioxide detect critical oxygen delivery during progressive hemorrhage in dogs. J Crit Care 7: 95–205 [Google Scholar]
  • Vallet B, Teboul JL, Cain S, Curtis S, (1998) Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol 89: 1317–21 [Google Scholar]
  • Nevière R, Chagnon JL, Teboul JL, Vallet B, Wattel F, (2002) Small intestine intramucosal PCO2 and microvascular blood flow during hypoxic and ischemic hypoxia. Crit Care Med 30: 379–84 [CrossRef] [PubMed] [Google Scholar]
  • Mecher CE, Rackow EC, Astiz ME, Weil MH, (1990) Venous hypercarbia associated with severe sepsis and systemic hypoperfusion. Crit Care Med 18: 585–9 [CrossRef] [PubMed] [Google Scholar]
  • Bakker J, Vincent JL, Gris P, Leon M, Coffernils M, Kahn RJ, (1992) Veno-arterial dioxide gradient in human septic shock. Chest 101: 509–15 [CrossRef] [PubMed] [Google Scholar]
  • Creteur J, De Backer D, Sakr Y, Koch M, Vincent JL, (2006) Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med 32: 516–23 [CrossRef] [PubMed] [Google Scholar]
  • Ospina-Tascón GA, Bautista-Rincón DF, Umaña M, Tafur JD, Gutiérrez A, García AF, Bermúdez W, Granados M, Arango-Dávila C, Hernández G, (2013) Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care 17: R294 [CrossRef] [PubMed] [Google Scholar]
  • Ospina-Tascón GA, Umaña M, Bermúdez WF, Bautista-Rincón DF, Valencia JD, Madriñán HJ, Hernandez G, Bruhn A, Arango-Dávila C, De Backer D, (2016) Can venous-to-arterial carbon dioxide difference reflect microcirculatory alterations in patients with septic shock? Intensive Care Med 42: 211–21 [CrossRef] [PubMed] [Google Scholar]
  • Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup, (2013) Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39: 165–228 [CrossRef] [PubMed] [Google Scholar]
  • Cuschieri J, Rivers EP, Donnino MW, Katilius M, Jacobsen G, Nguyen HB, Pamukov N, Horst HM, (2005) Central venous-arterial carbon dioxide difference as an indicator of cardiac index. Intensive Care Med 31: 818–22 [CrossRef] [PubMed] [Google Scholar]
  • van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC, (2013) Central venous-arterial PCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med 39: 1034–9 [CrossRef] [PubMed] [Google Scholar]
  • Vallée F, Vallet B, Mathe O, Parraguette J, Mari A, Silva S, Samii K, Fourcade O, Genestal M, (2008) Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock? Intensive Care Med 34: 2218–25 [CrossRef] [PubMed] [Google Scholar]
  • Mallat J, Pepy F, Lemyze M, Gasan G, Vangrunderbeeck N, Tronchon L, Vallet B, Thevenin D, (2014) Central venous-to-arterial carbon dioxide partial pressure difference in early resuscitation from septic shock: a prospective observational study. Eur J Anaesthesiol 31: 371–80 [CrossRef] [PubMed] [Google Scholar]
  • Du W, Liu DW, Wang XT, Long Y, Chai WZ, Zhou X, Rui X, (2013) Combining venous-to-arterial partial pressure of carbon dioxide difference and central venous oxygen saturation to guide resuscitation in septic shock. J Crit Care 28: 1110.e1–5 [CrossRef] [PubMed] [Google Scholar]
  • Jakob SM, Broeneveld AB, Teboul JL, (2015) Venous-arterial CO2 to arterial-venous O2 difference ratio as a resuscitation target in shock states? Intensive Care Med 41: 936–8 [CrossRef] [PubMed] [Google Scholar]
  • Mekontso-Dessap A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, Teboul JL, (2002) Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med 28: 272–7 [CrossRef] [PubMed] [Google Scholar]
  • Monnet X, Julien F, Ait-Hamou N, Lequoy M, Gosset C, Jozwiak M, Persichini R, Anguel N, Richard C, Teboul JL, (2013) Lactate and venoarterial carbon dioxide difference/arterial venous oxygen difference ratio, but not central venous oxygen saturation, predict increase in oxygen consumption in fluid responders. Crit Care Med 41: 1412–20 [CrossRef] [PubMed] [Google Scholar]
  • Mesquida J, Saludes P, Gruartmoner G, Espinal C, Torrents E, Baigorri F, Artigas A, (2015) Central venous-to-arterial carbon dioxide difference combined with arterial-to-venous oxygen content difference is associated with lactate evolution in the hemodynamic resuscitation process in early septic shock. Crit Care 19: 126 [CrossRef] [PubMed] [Google Scholar]
  • Ospina-Tascón GA, Umaña M, Bermúdez W, Bautista-Rincón DF, Hernandez G, Bruhn A, Granados M, Salazar B, Arango-Dávila C, De Backer D, (2015) Combination of arterial lactate levels and venous-arterial CO2 to arterio-venous O2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med 41: 796–805 [CrossRef] [PubMed] [Google Scholar]
  • Mallat J, Lemyze M, Meddour M, Pepy F, Gasan G, Barrailler S, Durville E, Temime J, Vangrunderbeeck N, Tronchon L, Vallet B, Thevenin D, (2016) Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care 6: 10 [CrossRef] [PubMed] [Google Scholar]
  • Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, Peterson E, Tomlanovich M; Early Goal-Directed Therapy Collaborative Group, (2001) Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 345: 1368–77 [CrossRef] [PubMed] [Google Scholar]
  • ProCESS Investigators; Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, Terndrup T, Wang HE, Hou PC, LoVecchio F, Filbin MR, Shapiro NI, Angus DC, (2014) A randomized trial of protocol-based care for early septic shock. N Engl J Med 370: 1683–93 [CrossRef] [PubMed] [Google Scholar]
  • ARISE Investigators; ANZICS Clincal Trials Group; Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, Higgins AM, Holdgate A, Howe BD, Webb SA, Williams P, (2014) Goal-directed resuscitation for patients with early septic shock. N Engl J Med 371: 1496–506 [CrossRef] [PubMed] [Google Scholar]
  • Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, Jahan R, Harvey SE, Bell D, Bion JF, Coats TJ, Singer M, Young JD, Rowan KM; ProMISe Trial Investigators, (2015) Trial of early, goal-directed resuscitation for septic shock. N Engl J Med 372: 1301–11 [CrossRef] [PubMed] [Google Scholar]
  • James JH, Luchette FA, McCarter FD, Fischer JE, (1999) Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 354: 505–8 [CrossRef] [PubMed] [Google Scholar]
  • Gore DC, Jahoor F, Hibbert JM, EJ DeMaria, (1996) Lactic acidosis during sepsis is related to increased pyruvate production, not deficits in tissue oxygen availability. Ann Surg 224: 97–102 [Google Scholar]
  • Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H, (1986) Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol 250: E634–40 [PubMed] [Google Scholar]
  • Curtis SE, Cain SM, (1992) Regional and systemic oxygen delivery/uptake relations and lactate flux in hyperdynamic, endotoxin-treated dogs. Am Rev Respir Dis 145: 348–54 [CrossRef] [PubMed] [Google Scholar]
  • Vallet B, Pinsky MR, Cecconi M, (2013) Resuscitation of patients with septic shock: please « mind the gap » ! Intensive Care Med 39: 1653–5 [CrossRef] [PubMed] [Google Scholar]
  • Gattinoni L, Brazzi L, Pelosi P, Latini R, Tognoni G, Pesenti A, Fumagalli R, (1995) A trial of goal-directed hemodynamic therapy in critically ill patients. SvO2 Collaborative Group. N Engl J Med 333: 1025–32 [CrossRef] [PubMed] [Google Scholar]
  • Ruffolo RR Jr, (1987) The pharmacology of dobutamine. Am J Med Sci 294: 244–8 [CrossRef] [PubMed] [Google Scholar]
  • Mallat J, Benzidi Y, Salleron J, Lemyze M, Gasan G, Vangrunderbeeck N, Pepy F, Tronchon L, Vallet B, Thevenin D, (2014) Time course of central venous-to-arterial carbon dioxide tension difference in septic shock patients receiving incremental doses of dobutamine. Intensive Care Med 40: 404–11 [CrossRef] [PubMed] [Google Scholar]
  • Teboul JL, Mercat A, Lenique F, Berton C, Richard C, (1998) Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med 26: 1007–10 [CrossRef] [PubMed] [Google Scholar]
  • Mallat J, Lazkani A, Lemyze M, Pepy F, Meddour M, Gasan G, Temime J, Vangrunderbeeck N, Tronchon L, Thevenin D, (2015) Repeatability of blood gas parameters, PCO2 gap, and PCO2 gap to arterial-to-venous oxygen content difference in critically ill adult patients. Medicine (Baltimore) 94: e415 [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.