Free Access
Méd. Intensive Réa.
Volume 26, Number 1, Janvier 2017
Page(s) 11 - 20
Section Mise au point / Update
Published online 17 November 2016
  • Voynow JA, Rubin BK, (2009) Mucins, mucus, and sputum. Chest 135: 505–512 [CrossRef] [PubMed] [Google Scholar]
  • Mogensen TH, (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22: 240–273 [CrossRef] [PubMed] [Google Scholar]
  • Kawai T, Akira S, (2011) Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637–650 [CrossRef] [PubMed] [Google Scholar]
  • Nish S, Medzhitov R, (2011) Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 34: 629–636 [CrossRef] [PubMed] [Google Scholar]
  • Cao X, (2016) Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 16: 35–50 [CrossRef] [PubMed] [Google Scholar]
  • Guillon A, Jouan Y, Brea D, Gueugnon F, Dalloneau E, Baranek T, Henry C, Morello E, Renauld JC, Pichavant M, Gosset P, Courty Y, Diot P, Si-Tahar M, (2015) Neutrophil proteases alter the interleukin-22-receptor-dependent lung antimicrobial defence. Eur Respir J 46: 771–782 [CrossRef] [PubMed] [Google Scholar]
  • Eisele NA, Anderson DM, (2011) Host defense and the airway epithelium: frontline responses that protect against bacterial invasion and pneumonia. J Pathog 2011: 1–16 [CrossRef] [Google Scholar]
  • Serhan CN, (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510: 92–101 [CrossRef] [PubMed] [Google Scholar]
  • Basil MC, Levy BD, (2015) Specialized pro-resolving mediators: endogenous regulators of infection and inflammation. Nat Rev Immunol 16: 51–67 [CrossRef] [PubMed] [Google Scholar]
  • Mansour SC, Pena OM, Hancock R, (2014) Host defense peptides: front-line immunomodulators. Trends Immunol 35: 443–450 [CrossRef] [PubMed] [Google Scholar]
  • Herr C, Beisswenger C, Hess C, Kandler K, Suttorp N, Welte T, Schroeder JM, Vogelmeier C; Bals R for the CAPNETZ Study Group, (2009) Suppression of pulmonary innate host defence in smokers. Thorax 64: 144–149 [CrossRef] [PubMed] [Google Scholar]
  • Bals R, (2000) Epithelial antimicrobial peptides in host defense against infection. Respir Res 1: 141–150 [CrossRef] [PubMed] [Google Scholar]
  • Evans SE, Xu Y, Tuvim MJ, Dickey BF, (2010) Inducible innate resistance of lung epithelium to infection. Annu Rev Physiol 72: 413–435 [CrossRef] [PubMed] [Google Scholar]
  • Vareille M, Kieninger E, Edwards MR, Regamey N, (2011) The airway epithelium: soldier in the fight against respiratory viruses. Clin Microbiol Rev 24: 210–229 [CrossRef] [PubMed] [Google Scholar]
  • Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA, (2008) Mucins in the mucosal barrier to infection. Mucosal Immunol 1: 183–197 [CrossRef] [PubMed] [Google Scholar]
  • Medzhitov R, (2008) Origin and physiological roles of inflammation. Nature 454: 428–435 [CrossRef] [PubMed] [Google Scholar]
  • Weitnauer M, Mijošek V, Dalpke AH, (2015) Control of local immunity by airway epithelial cells. Mucosal Immunol 9: 287–298 [CrossRef] [PubMed] [Google Scholar]
  • Iwasaki A, Medzhitov R, (2015) Control of adaptive immunity by the innate immune system. Nat Immunol 16: 343–353 [CrossRef] [PubMed] [Google Scholar]
  • Soares MP, Gozzelino R, Weis S, (2014) Tissue damage control in disease tolerance. Trends Immunol 35: 483–494 [CrossRef] [PubMed] [Google Scholar]
  • Medzhitov R, Schneider DS, Soares MP, (2012) Disease tolerance as a defense strategy. Science 335: 936–941 [CrossRef] [PubMed] [Google Scholar]
  • McAleer JP, Kolls JK, (2014) Directing traffic: IL-17 and IL-22 coordinate pulmonary immune defense. Immunol Rev 260: 129–144 [CrossRef] [PubMed] [Google Scholar]
  • Kumar P, Rajasekaran K, Palmer JM, Thakar MS, Malarkannan S, (2013) IL-22: an evolutionary missing-link authenticating the role of the immune system in tissue regeneration. J Cancer 4: 57–65 [CrossRef] [PubMed] [Google Scholar]
  • Grommes J, Soehnlein O, (2011) Contribution of neutrophils to acute lung injury. Mol Med 17: 293–307 [CrossRef] [PubMed] [Google Scholar]
  • Aggarwal NR, King LS, D’Alessio FR, (2014) Diverse macrophage populations mediate acute lung inflammation and resolution. Am J Physiol Lung Cell Mol Physiol 306: L709–L725 [CrossRef] [PubMed] [Google Scholar]
  • D’Alessio FR, Tsushima K, Aggarwal NR, West EE, Willett MH, Britos MF, Pipeling MR, Brower RG, Tuder RM, McDyer JF, King LS, (2009) CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest 119: 2898–2913 [CrossRef] [PubMed] [Google Scholar]
  • Mikacenic C, Hansen EE, Radella F, Gharib SA, Stapleton RD, Wurfel MM, (2015) Interleukin-17A is associated with alveolar inflammation and poor outcomes in acute respiratory distress syndrome. Crit Care Med 44: 496–502 [CrossRef] [Google Scholar]
  • Li C, Yang P, Sun Y, Li T, Wang C, Wang Z, Zou Z, Yan Y, Wang W, Wang C, Chen Z, Xing L, Tang C, Ju X, Guo F, Deng J, Zhao Y, Yang P, Tang J, Wang H, Zhao Z, Yin Z, Cao B, Wang X, Jiang C, (2012) IL-17 response mediates acute lung injury induced by the 2009 pandemic influenza A (H1N1) virus. Cell Res 22: 528–538 [CrossRef] [PubMed] [Google Scholar]
  • Eickmeier O, Seki H, Haworth O, Hilberath JN, Gao F, Uddin M, Croze RH, Carlo T, Pfeffer MA, Levy BD, (2013) Aspirin-triggered resolvin D1 reduces mucosal inflammation and promotes resolution in a murine model of acute lung injury. Mucosal Immunol 6: 256–266 [CrossRef] [PubMed] [Google Scholar]
  • Fukunaga K, Kohli P, Bonnans C, Fredenburgh LE, Levy BD, (2005) Cyclooxygenase 2 plays a pivotal role in the resolution of acute lung injury. J Immunol 174: 5033–5039 [CrossRef] [PubMed] [Google Scholar]
  • Sun W, Wang ZP, Gui P, Xia W, Xia Z, Zhang XC, Deng QZ, Xuan W, Marie C, Wang LL, Wu QP, Wang T, Lin Y, (2014) Endogenous expression pattern of resolvin D1 in a rat model of self-resolution of lipopolysaccharide-induced acute respiratory distress syndrome and inflammation. Int Immunopharmacol 23: 247–253 [CrossRef] [PubMed] [Google Scholar]
  • Bhattacharya J, Matthay MA, (2013) Regulation and repair of the alveolar-capillary barrier in acute lung injury. Annu Rev Physiol 75: 593–615 [CrossRef] [PubMed] [Google Scholar]
  • Koval M, (2013) Claudin heterogeneity and control of lung tight junctions. Annu Rev Physiol 75: 551–567 [CrossRef] [PubMed] [Google Scholar]
  • Matthay MA, (2014) Resolution of pulmonary edema. Thirty years of progress. Am J Respir Crit Care Med 189: 1301–1308 [CrossRef] [PubMed] [Google Scholar]
  • Pociask DA, Scheller EV, Mandalapu S, McHugh KJ, Enelow RI, Fattman CL, Kolls JK, Alcorn JF, (2013) IL-22 is essential for lung epithelial repair following influenza infection. Am J Pathol 182: 1286–1296 [CrossRef] [PubMed] [Google Scholar]
  • Paget C, Ivanov S, Fontaine J, Renneson J, Blanc F, Pichavant M, Dumoutier L, Ryffel B, Renauld JC, Gosset P, Gosset P, Si-Tahar M, Faveeuw C, Trottein F, (2012) Interleukin-22 is produced by invariant natural killer T lymphocytes during influenza A virus infection: potential role in protection against lung epithelial damages. J Biol Chem 287: 8816–8829 [CrossRef] [PubMed] [Google Scholar]
  • Sonnenberg GF, Nair MG, Kirn TJ, Zaph C, Fouser LA, Artis D, (2010) Pathological versus protective functions of IL-22 in airway inflammation are regulated by IL-17A. J Exp Med 207: 1293–1305 [CrossRef] [PubMed] [Google Scholar]
  • Hoegl S, Bachmann M, Scheiermann P, Goren I, Hofstetter C, Pfeilschifter J, Zwissler B, Muhl H, (2011) Protective properties of inhaled IL-22 in a model of ventilator-induced lung injury. Am J Respir Cell Mol Biol 44: 369–376 [CrossRef] [PubMed] [Google Scholar]
  • Qiao YY, Liu XQ, Xu CQ, Zhang Z, Xu HW, (2016) Interleukin-22 ameliorates acute severe pancreatitis-associated lung injury in mice. World J Gastroenterol 22: 5023–5032 [CrossRef] [PubMed] [Google Scholar]
  • Guillon A, Gueugnon F, Mavridis K, Dalloneau E, Jouan Y, Diot P, Heuzé-Vourc'h N, Courty Y, Si-Tahar M, (2016) Interleukin-22 receptor is overexpressed in nonsmall cell lung cancer and portends a poor prognosis. Eur Respir J 47: 1277–1280 [CrossRef] [PubMed] [Google Scholar]
  • Tosiek MJ, Bader SR, Gruber AD, Buer J, Gereke M, Bruder D, (2012) CD8(+) T cells responding to alveolar self-antigen lack CD25 expression and fail to precipitate autoimmunity. Am J Respir Cell Mol Biol 47: 869–878 [CrossRef] [PubMed] [Google Scholar]
  • Churg A, Wright JL, (2007) Animal models of cigarette smoke-induced chronic obstructive lung disease. In: Models of exacerbations in asthma and COPD. Karger, Basel, pp 113–125 [CrossRef] [Google Scholar]
  • Sethi S, Maloney J, Grove L, Wrona C, Berenson CS, (2006) Airway inflammation and bronchial bacterial colonization in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 173: 991–998 [CrossRef] [PubMed] [Google Scholar]
  • O'Shaughnessy TC, Ansari TW, (1997) Inflammation in bronchial biopsies of subjects with chronic bronchitis: inverse relationship of CD8+ T lymphocytes with FEV1. Am J Respir Crit Care Med 155: 852–857 [CrossRef] [PubMed] [Google Scholar]
  • Saetta M, Baraldo S, Corbino L, Turato G, (1999) CD8+ ve cells in the lungs of smokers with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 160: 711–717 [CrossRef] [PubMed] [Google Scholar]
  • Sethi S, Murphy TF, (2008) Infection in the pathogenesis and course of chronic obstructive pulmonary disease. N Engl J Med 359: 2355–2365 [CrossRef] [PubMed] [Google Scholar]
  • Brusselle GG, Joos GF, Bracke KR, (2011) New insights into the immunology of chronic obstructive pulmonary disease. Lancet 378: 1015–1026 [CrossRef] [PubMed] [Google Scholar]
  • Zhang W, Case S, Bowler RP, Martin RJ, Jiang D, Chu HW, (2011) Cigarette smoke modulates PGE(2) and host defence against Moraxella catarrhalis infection in human airway epithelial cells. Respirology 16: 508–516 [CrossRef] [PubMed] [Google Scholar]
  • Mallia P, Footitt J, Sotero R, Jepson A, Contoli M, Trujillo-Torralbo MB, Kebadze T, Aniscenko J, Oleszkiewicz G, Gray K, Message SD, Ito K, Barnes PJ, Adcock IM, Papi A, Stanciu LA, Elkin SL, Kon OM, Johnson M, Johnston SL, (2012) Rhinovirus infection induces degradation of antimicrobial peptides and secondary bacterial infection in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 186: 1117–1124 [CrossRef] [PubMed] [Google Scholar]
  • Humphrey JD, Dufresne ER, Schwartz MA, (2014) Mechanotransduction and extracellular matrix homeostasis. Nat Rev Mol Cell Biol 15: 802–812 [CrossRef] [PubMed] [Google Scholar]
  • Waters CM, Roan E, Navajas D, (2012) Mechanobiology in lung epithelial cells: measurements, perturbations, and responses. Compr Physiol 2: 1–29 [PubMed] [Google Scholar]
  • Pruitt BL, Dunn AR, Weis WI, Nelson WJ, (2014) Mechano-transduction: from molecules to tissues. PLoS Biol 12: e1001996–7 [CrossRef] [PubMed] [Google Scholar]
  • Tremblay LN, Miatto D, Hamid Q, Govindarajan A, Slutsky AS, (2002) Injurious ventilation induces widespread pulmonary epithelial expression of tumor necrosis factor-alpha and interleukin-6 messenger RNA. Crit Care Med 30: 1693–1700 [CrossRef] [PubMed] [Google Scholar]
  • Chapman KE, Sinclair SE, Zhuang D, Hassid A, Desai LP, Waters CM, (2005) Cyclic mechanical strain increases reactive oxygen species production in pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 289: L834–L841 [CrossRef] [PubMed] [Google Scholar]
  • Hammerschmidt S, Kuhn H, Sack U, Schlenska A, Gessner C, Gillissen A, Wirtz H, (2005) Mechanical stretch alters alveolar type II cell mediator release toward a proinflammatory pattern. Am J Respir Cell Mol Biol 33: 203–210 [CrossRef] [PubMed] [Google Scholar]
  • Vlahakis NE, Schroeder MA, Limper AH, Hubmayr RD, (1999) Stretch induces cytokine release by alveolar epithelial cells in vitro. Am J Physiol 277: L167–L173 [PubMed] [Google Scholar]
  • Kuipers MT, van der Poll T, Schultz MJ, Wieland CW, (2011) Bench-to-bedside review: damage-associated molecular patterns in the onset of ventilator-induced lung injury. Crit Care 15:235 [CrossRef] [PubMed] [Google Scholar]
  • Tremblay LN, Slutsky AS, (1998) Ventilator-induced injury: from barotrauma to biotrauma. Proc Assoc Am Physicians 110: 482–488 [PubMed] [Google Scholar]
  • Dhanireddy S, Altemeier WA, Matute-Bello G, O'Mahony DS, Glenny RW, Martin TR, Liles WC, (2006) Mechanical ventilation induces inflammation, lung injury, and extrapulmonary organ dysfunction in experimental pneumonia. Lab Invest 86: 790–799 [CrossRef] [PubMed] [Google Scholar]
  • Altemeier WA, Matute-Bello G, Gharib SA, Glenny RW, Martin TR, Liles WC, (2005) Modulation of lipopolysaccharide-induced gene transcription and promotion of lung injury by mechanical ventilation. J Immunol 175: 3369–3376 [CrossRef] [PubMed] [Google Scholar]
  • Perlman CE, Bhattacharya J, (2007) Alveolar expansion imaged by optical sectioning microscopy. J Appl Physiol 103: 1037–1044 [CrossRef] [PubMed] [Google Scholar]
  • Perlman CE, Lederer DJ, Bhattacharya J, (2011) Micromechanics of alveolar edema. Am J Respir Cell Mol Biol 44: 34–39 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.