- Vanholder R, Sever MS, Erek E, Lameire N (2000) Rhabdomyolysis. J Am Soc Nephrol 11:1553–61 [PubMed] [Google Scholar]
- Bywaters EG, Beall D (1941) Crush injuries with impairment of renal function. Br Med J 1:427–32 [CrossRef] [PubMed] [Google Scholar]
- Bywaters EG, Delory GE, Rimington C, Smiles J (1941) Myohaemoglobin in the urine of air raid casualties with crushing injury. Biochem J 35:1164–8 [CrossRef] [PubMed] [Google Scholar]
- Ponraj D, Gopalakrishnakone P (1995) Morphological changes induced by a generalized myotoxin (myoglobinuria-inducing toxin) from the venom of Pseudechis australis (king brown snake) in skeletal muscle and kidney of mice. Toxicon 33:1453–67 [CrossRef] [PubMed] [Google Scholar]
- Bedry R, Baudrimont I, Deffieux G, et al (2001) Wild-mushroom intoxication as a cause of rhabdomyolysis. N Engl J Med 345:798–802 [CrossRef] [PubMed] [Google Scholar]
- Krajčová A, Waldauf P, Anděl M, Duška F (2015) Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care 19:398 [CrossRef] [PubMed] [Google Scholar]
- Scalco RS, Gardiner AR, Pitceathly RD, et al (2015) Rhabdomyolysis: a genetic perspective. Orphanet J Rare Dis 10:51 [CrossRef] [PubMed] [Google Scholar]
- McMahon GM, Zeng X, Waikar SS (2013) A risk prediction score for kidney failure or mortality in rhabdomyolysis. JAMA Intern Med 173:1821–8 [CrossRef] [PubMed] [Google Scholar]
- Melli G, Chaudhry V, Cornblath DR (2005) Rhabdomyolysis: an evaluation of 475 hospitalized patients. Medicine (Baltimore) 84:377–85 [CrossRef] [PubMed] [Google Scholar]
- Holt SG, Moore KP (2001) Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intensive Care Med 27:803–11 [CrossRef] [PubMed] [Google Scholar]
- Bosch X, Poch E, Grau JM (2009) Rhabdomyolysis and acute kidney injury. N Engl J Med 361:62–72 [CrossRef] [PubMed] [Google Scholar]
- Rodríguez E, Soler MJ, Rap O, Barrios C, Orfila MA, Pascual J (2013) Risk factors for acute kidney injury in severe rhabdomyolysis. PLoS One 8:82992 [CrossRef] [Google Scholar]
- Wang J, Wang D, Li Y, et al (2013) Rhabdomyolysis-induced acute kidney injury under hypoxia and deprivation of food and water. Kidney Blood Press Res 37:414–21 [CrossRef] [PubMed] [Google Scholar]
- Chedru MF, Baethke R, Oken DE (1972) Renal cortical blood flow and glomerular filtration in myohemoglobinuric acute renal failure. Kidney Int 1:232–9 [CrossRef] [PubMed] [Google Scholar]
- Wrogemann K, Pena SD (1976) Mitochondrial calcium overload: a general mechanism for cell-necrosis in muscle diseases. Lancet 1:672–4 [CrossRef] [PubMed] [Google Scholar]
- Lathem W (1960) The binding of myoglobin by plasma protein. J Exp Med 111:65–75 [CrossRef] [PubMed] [Google Scholar]
- Ordway GA, Garry DJ (2004) Myoglobin: an essential hemoprotein in striated muscle. J Exp Biol 207:3441–6 [CrossRef] [PubMed] [Google Scholar]
- Zager RA, Burkhart K (1997) Myoglobin toxicity in proximal human kidney cells: roles of Fe, Ca2+, H2O2, and terminal mitochondrial electron transport. Kidney Int 51:728–38 [CrossRef] [PubMed] [Google Scholar]
- Zager RA, Burkhart KM, Conrad DS, Gmur DJ (1995) Iron, heme oxygenase, and glutathione: effects on myohemoglobinuric proximal tubular injury. Kidney Int 48:1624–34 [CrossRef] [PubMed] [Google Scholar]
- Reeder BJ, Wilson MT (2005) Hemoglobin and myoglobin associated oxidative stress: from molecular mechanisms to disease States. Curr Med Chem 12:2741–51 [CrossRef] [PubMed] [Google Scholar]
- Karam H, Bruneval P, Clozel JP, Löffler BM, Bariéty J, Clozel M (1995) Role of endothelin in acute renal failure due to rhabdomyolysis in rats. J Pharmacol Exp Ther 274:481–6 [PubMed] [Google Scholar]
- Benabe JE, Klahr S, Hoffman MK, Morrison AR (1980) Production of thromboxane A2 by the kidney in glycerol-induced acute renal failure in the rabbit. Prostaglandins 19:333–47 [CrossRef] [PubMed] [Google Scholar]
- Hao K, Hanawa H, Ding L, et al (2011) Free heme is a danger signal inducing expression of proinflammatory proteins in cultured cells derived from normal rat hearts. Mol Immunol 48:1191–202 [CrossRef] [PubMed] [Google Scholar]
- Agarwal A, Nick HS (2000) Renal response to tissue injury: lessons from heme oxygenase-1 geneablation and expression. J Am Soc Nephrol 11:965–73 [PubMed] [Google Scholar]
- Nath KA, Balla G, Vercellotti GM, et al (1992) Induction of heme oxygenase is a rapid, protective response in rhabdomyolysis in the rat. J Clin Invest 90:267–70 [CrossRef] [PubMed] [Google Scholar]
- Nath KA, Haggard JJ, Croatt AJ, Grande JP, Poss KD, Alam J (2000) The indispensability of heme oxygenase-1 in protecting against acute heme protein-induced toxicity in vivo. Am J Pathol 156:1527–35 [CrossRef] [PubMed] [Google Scholar]
- Zarjou A, Bolisetty S, Joseph R, et al (2013) Proximal tubule H-ferritin mediates iron trafficking in acute kidney injury. J Clin Invest 123:4423–34 [CrossRef] [PubMed] [Google Scholar]
- Belliere J, Casemayou A, Ducasse L, et al (2014) Specific macrophage subtypes influence the progression of rhabdomyolysis-induced kidney injury. J Am Soc Nephrol 26:1363–77 [CrossRef] [PubMed] [Google Scholar]
- Rubio-Navarro A, Carril M, Padro D, et al (2016) CD163-macrophages are involved in rhabdomyolysis-induced kidney injury and may be detected by MRI with targeted gold-coated iron oxide nanoparticles. Theranostics 6:896–914 [CrossRef] [PubMed] [Google Scholar]
- Mousavi SR, Vahabzadeh M, Mahdizadeh A, et al (2015) Rhabdomyolysis in 114 patients with acute poisonings. J Res Med Sci 20:239–43 [PubMed] [Google Scholar]
- Melli G, Chaudhry V, Cornblath DR (2005) Rhabdomyolysis: an evaluation of 475 hospitalized patients. Medicine (Baltimore) 84:377–85 [CrossRef] [PubMed] [Google Scholar]
- Llach F, Felsenfeld AJ, Haussler MR (1981) The pathophysiology of altered calcium metabolism in rhabdomyolysis-induced acute renal failure. Interactions of parathyroid hormone, 25-hydroxycholecalciferol, and 1,25-dihydroxycholecalciferol. N Engl J Med 305:117–23 [CrossRef] [PubMed] [Google Scholar]
- Sever MS, Vanholder R (2013) Management of crush victims in mass disasters: highlights from recently published recommendations. Clin J Am Soc Nephrol 8:328–35 [CrossRef] [PubMed] [Google Scholar]
- Zeng X, Zhang L, Wu T, Fu P (2014) Continuous renal replacement therapy (CRRT) for rhabdomyolysis. Cochrane Database Syst Rev 6:CD008566 [Google Scholar]
- Premru V, Kovac J, Buturovic-Ponikvar J, Ponikvar R (2013) Some kinetic considerations in high cut-off hemodiafiltration for acute myoglobinuric renal failure. Ther Apher Dial 17:396–401 [CrossRef] [PubMed] [Google Scholar]
- Heyne N, Guthoff M, Krieger J, Haap M, Häring HU (2013) High cut-off renal replacement therapy for removal of myoglobin in severe rhabdomyolysis and acute kidney injury: a case series. Nephron Clin Pract 121:159–64 [CrossRef] [Google Scholar]
- Premru V, Kovac J, Buturovic-Ponikvar J, Ponikvar R (2011) High cut-off membrane hemodiafiltration in myoglobinuric acute renal failure: a case series. Ther Apher Dial 15:287–91 [CrossRef] [PubMed] [Google Scholar]
- Levin PD, Levin V, Weissman C, Sprung CL, Rund D (2015) Therapeutic plasma exchange as treatment for propofol infusion syndrome. J Clin Apher 30:311–3 [CrossRef] [PubMed] [Google Scholar]
- Swaroop R, Zabaneh R, Parimoo N (2009) Plasmapheresis in a patient with rhabdomyolysis: a case report. Cases J 2:8138 [CrossRef] [PubMed] [Google Scholar]
- Abul-Ezz SR, Walker PD, Shah SV (1991) Role of glutathione in an animal model of myoglobinuric acute renal failure. Proc Natl Acad Sci U S A 88:9833–7 [CrossRef] [PubMed] [Google Scholar]
- Fernández-Fúnez A, Polo FJ, Broseta L, Valer J, Zafrilla L (2002) Effects of N-acetylcysteine on myoglobinuric-acute renal failure in rats. Ren Fail 24:725–33 [CrossRef] [PubMed] [Google Scholar]
- Kim JH, Lee SS, Jung MH, et al (2010) N-acetylcysteine attenuates glycerol-induced acute kidney injury by regulating MAPKs and Bcl-2 family proteins. Nephrol Dial Transplant 25:1435–43 [CrossRef] [PubMed] [Google Scholar]
- Kim YS, Jung MH, Choi MY, et al (2009) Glutamine attenuates tubular cell apoptosis in acute kidney injury via inhibition of the c-Jun N-terminal kinase phosphorylation of 14-3-3. Crit Care Med 37:2033–44 [CrossRef] [PubMed] [Google Scholar]
- Ustundag S, Sen S, Yalcin O, Ciftci S, Demirkan B, Ture M (2009) L-Carnitine ameliorates glycerol-induced myoglobinuric acute renal failure in rats. Ren Fail 31:124–33 [CrossRef] [PubMed] [Google Scholar]
- Liu Y, Fu X, Gou L, et al (2013) L-citrulline protects against glycerol-induced acute renal failure in rats. Ren Fail 35:367–73 [CrossRef] [PubMed] [Google Scholar]
- Singh D, Chander V, Chopra K (2003) Carvedilol, an antihypertensive drug with antioxidant properties, protects against glycerol-induced acute renal failure. Am J Nephrol 23:415–21 [CrossRef] [PubMed] [Google Scholar]
- Chander V, Chopra K (2006) Protective effect of resveratrol, a polyphenolic phytoalexin on glycerol-induced acute renal failure in rat kidney. Ren Fail 28:161–9 [CrossRef] [PubMed] [Google Scholar]
- Subeq YM, Wu WT, Lee CJ, Lee RP, Yang FL, Hsu BG (2009) Pentobarbital reduces rhabdomyolysis-induced acute renal failure in conscious rats. J Trauma 67:132–8 [CrossRef] [PubMed] [Google Scholar]
- Wang YD, Zhang L, Cai GY, et al (2011) Fasudil ameliorates rhabdomyolysis-induced acute kidney injury via inhibition of apoptosis. Ren Fail 33:811–8 [CrossRef] [PubMed] [Google Scholar]
- Gu H, Yang M, Zhao X, Zhao B, Sun X, Gao X (2014) Pretreatment with hydrogen-rich saline reduces the damage caused by glycerol-induced rhabdomyolysis and acute kidney injury in rats. J Surg Res 188:243–9 [CrossRef] [PubMed] [Google Scholar]
- Korrapati MC, Shaner BE, Schnellmann RG (2012) Recovery from glycerol-induced acute kidney injury is accelerated by suramin. J Pharmacol Exp Ther 341:126–36 [CrossRef] [PubMed] [Google Scholar]
- Boutaud O, Moore KP, Reeder BJ, et al (2010) Acetaminophen inhibits hemoprotein-catalyzed lipid peroxidation and attenuates rhabdomyolysis-induced renal failure. Proc Natl Acad Sci USA 107:2699–704 [CrossRef] [Google Scholar]
- Shanu A, Groebler L, Kim HB, et al (2013) Selenium inhibits renal oxidation and inflammation but not acute kidney injury in an animal model of rhabdomyolysis. Antioxid Redox Signal 18:756–69 [CrossRef] [PubMed] [Google Scholar]
- Yang FL, Subeq YM, Chiu YH, Lee RP, Lee CJ, Hsu BG (2012) Recombinant human erythropoietin reduces rhabdomyolysis-induced acute renal failure in rats. Injury 43:367–73 [CrossRef] [PubMed] [Google Scholar]
- Homsi E, Janino P, de Faria JB (2006) Role of caspases on cell death, inflammation, and cell cycle in glycerol-induced acute renal failure. Kidney Int 69:1385–92 [CrossRef] [PubMed] [Google Scholar]
- Tang WX, Wu WH, Qiu HY, Bo H, Huang SM (2013) Amelioration of rhabdomyolysis-induced renal mitochondrial injury and apoptosis through suppression of Drp-1 translocation. J Nephrol 26:1073–82 [CrossRef] [PubMed] [Google Scholar]
- Tsurkan MV, Hauser PV, Zieris A, et al (2013) Growth factor delivery from hydrogel particle aggregates to promote tubular regeneration after acute kidney injury. J Control Release 167:248–55 [CrossRef] [PubMed] [Google Scholar]
- Herrera MB, Bussolati B, Bruno S, Fonsato V, Romanazzi GM, Camussi G (2004) Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury. Int J Mol Med 14:1035–41 [PubMed] [Google Scholar]
- Herrera MB, Bussolati B, Bruno S, et al (2007) Exogenous mesenchymal stem cells localize to the kidney by means of CD44 following acute tubular injury. Kidney Int 72:430–41 [CrossRef] [PubMed] [Google Scholar]
- Hauser PV, De Fazio R, Bruno S, et al (2010) Stem cells derived from human amniotic fluid contribute to acute kidney injury recovery. Am J Pathol 177:2011–21 [CrossRef] [PubMed] [Google Scholar]
- Baeza-Trinidad R, Brea-Hernando A, Morera-Rodriguez S, et al (2015) Creatinine as predictor value of mortality and acute kidney injury in rhabdomyolysis. Intern Med J 45:1173–8 [CrossRef] [PubMed] [Google Scholar]
- Stewart IJ, Faulk TI, Sosnov JA, et al (2015) Rhabdomyolysis among critically ill combat casualties: associations with acute kidney injury and mortality. J Trauma Acute Care Surg 80:492–8 [CrossRef] [Google Scholar]
- Sousa A, Paiva JA, Fonseca S, et al (2013) Rhabdomyolysis: risk factors and incidence in polytrauma patients in the absence of major disasters. Eur J Trauma Emerg Surg 39:131–7 [CrossRef] [PubMed] [Google Scholar]
- de Meijer AR, Fikkers BG, de Keijzer MH, van Engelen BG, Drenth JP (2003) Serum creatine kinase as predictor of clinical course in rhabdomyolysis: a 5-year intensive care survey. Intensive Care Med 29:1121–5 [CrossRef] [PubMed] [Google Scholar]
- Woodrow G, Brownjohn AM, Turney JH (1995) The clinical and biochemical features of acute renal failure due to rhabdomyolysis. Ren Fail 17:467–74 [CrossRef] [PubMed] [Google Scholar]
- Zhang LY, Ding JT, Wang Y, Zhang WG, Deng XJ, Chen JH (2010) MRI quantitative study and pathologic analysis of crush injury in rabbit hind limb muscles. J Surg Res 167:357–63 [CrossRef] [Google Scholar]
- Sever MS, Erek E, Vanholder R, et al (2003) Serum potassium in the crush syndrome victims of the Marmara disaster. Clin Nephrol 59:326–33 [CrossRef] [PubMed] [Google Scholar]
- Sever MS, Erek E, Vanholder R, et al (2002) Treatment modalities and outcome of the renal victims of the Marmara earthquake. Nephron 92:64–71 [CrossRef] [PubMed] [Google Scholar]
- Zhang L, Fu P, Wang L, et al (2012) The clinical features and outcome of crush patients with acute kidney injury after the Wenchuan earthquake: differences between elderly and younger adults. Injury 43:1470–5 [CrossRef] [PubMed] [Google Scholar]
- Vanholder R, Gibney N, Luyckx VA, Sever MS (2010) Renal disaster relief task force in Haiti earthquake. Lancet 375:1162–3 [CrossRef] [Google Scholar]
- Agence de la biomédecine (2012) Rapport annuel Réseau épidémiologique et information en néphrologie (REIN) [Google Scholar]
- Sathyan S, Baskharoun R, Perlman AS (2013) Prevention of recurrent episodes of rhabdomyolysis with tacrolimus in a transplant recipient with myopathy. Am J Ther 5:171–4 [Google Scholar]
- McCarron DA, Royer KA, Houghton DC, Bennett WM (1980) Chronic tubulointerstitial nephritis caused by recurrent myoglobinuria. Arch Intern Med 140:1106–7 [CrossRef] [PubMed] [Google Scholar]
Free Access
Issue |
Méd. Intensive Réa.
Volume 25, Number 6, Novembre 2016
Néphrologie et métabolisme
|
|
---|---|---|
Page(s) | 557 - 569 | |
Section | Mise au point / Update | |
DOI | https://doi.org/10.1007/s13546-016-1229-9 | |
Published online | 04 October 2016 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.