Free Access
Issue
Méd. Intensive Réa
Volume 25, Number 5, Septembre 2016
Médecine d'urgence-Neuroréanimation
Page(s) 506 - 513
Section Mise Au Point / Update
DOI https://doi.org/10.1007/s13546-016-1212-5
Published online 24 June 2016
  • Inpes (2004) Campagne nationale de prévention des incendies domestiques (Internet). Disponible sur : www.inpes.sante.fr/70000/dp/04/dp041019.pdf (consulté le 23 mai 2016) [Google Scholar]
  • Liu JC, Pereira G, Uhl SA, et al (2015) A systematic review of the physical health impacts from non-occupational exposure to wildfire smoke. Environ Res 136:120–32 [CrossRef] [PubMed] [Google Scholar]
  • Cohen MA, Guzzardi LJ (1983) Inhalation of products of combustion. Ann Emerg Med 12:628–32 [CrossRef] [PubMed] [Google Scholar]
  • Chivas C (2005) Toxicité et dispersion des fumées d’incendie. Phénoménologie et modélisation des effets (Internet). Ineris. Disponible sur : www.ineris.fr/centredoc/Omega_16_Toxicite_fumees_web.pdf (consulté le 23 mai 2016) [Google Scholar]
  • Youssouf H, Liousse C, Roblou L, et al (2014) Quantifying wildfires exposure for investigating health-related effects. Atmos Environ 97:239–51 [CrossRef] [Google Scholar]
  • Statheropoulos M, Karma S (2007) Complexity and origin of the smoke components as measured near the flame-front of a real forest fire incident: a case study. J Anal Appl Pyrolysis 78:430–7 [CrossRef] [Google Scholar]
  • Zhu F, Qiu X, Wang J, et al (2012) A rat model of smoke inhalation injury. Inhal Toxicol 24:356–64 [CrossRef] [PubMed] [Google Scholar]
  • Abali AES, Karakayali H, Ozdemir BH, et al (2013) Destructive pulmonary effects of smoke inhalation and simultaneous alterations in circulating IL-6, TNF-α, and IFN-γ levels at different burn depths: an experimental study on rats. J Burn Care Res 34:334–41 [CrossRef] [PubMed] [Google Scholar]
  • Murakami K, Traber DL (2003) Pathophysiological basis of smoke inhalation injury. News Physiol Sci 18:125–9 [PubMed] [Google Scholar]
  • Fortin MA (2000) Toxicité des fumées d’incendie. Santé Comprendre, no 576 [Google Scholar]
  • Mairesse M, Petit JM, Chéron J, Falcy M (1999) Produits de dégradation thermique des matières plastiques. INRS, Cahiers de notes documentaires — Hygiène et sécurité au travail, no 174 [Google Scholar]
  • Garnier R, Chataigner D, Efthymiou ML (1990) Toxicité des produits de dégradation thermique des principaux polymères. Données expérimentales. Reanim Urg ii:411–26 [Google Scholar]
  • Mégarbane B, Lefort H (2013) Fire smoke inhalation: mechanisms of toxicity and recommandations for management. Med J Emerg Med 14:21–30 [Google Scholar]
  • Tissot S, Pichard A (2000) Seuils de toxicité aiguë de l’hydrogène sulfuré (Internet). Ineris. Disponible sur : www.ineris.fr/centredoc/seuil_hydrogene_sulf_seuils.pdf (consulté le 23 mai 2016) [Google Scholar]
  • Djerad A, Monier C, Houzé P (2001) Effects of respiratory acidosis and alkalosis on the distribution of cyanide into the brain. Toxicol Sci 61:273–82 [CrossRef] [PubMed] [Google Scholar]
  • Ikonomidis C, Lang F, Radu A, Berger MM (2012) Standardizing the diagnosis of inhalation injury using a descriptive score based on mucosal injury criteria. Burns 38:513–9 [CrossRef] [PubMed] [Google Scholar]
  • Masanes MJ, Legendre C, Lioret N, et al (1994) Fiberoptic bronchoscopy for the early diagnosis of subglottal inhalation injury: comparative value in the assessment of prognosis. J Trauma 36:59–67 [CrossRef] [PubMed] [Google Scholar]
  • Albright JM, Davis CS, Bird MD, et al (2012) The acute pulmonary inflammatory response to the graded severity of smoke inhalation injury. Crit Care Med 40:1113–21 [CrossRef] [PubMed] [Google Scholar]
  • Davis CS, Janus SE, Mosier MJ, et al (2013) Inhalation injury severity and systemic immune perturbations in burned adults. Ann Surg 257:1137–46 [CrossRef] [PubMed] [Google Scholar]
  • Davis CS, Albright JM, Carter SR, et al (2012) Early pulmonary immune hyporesponsiveness is associated with mortality after burn and smoke inhalation injury. J Burn Care Res 33:26–35 [CrossRef] [PubMed] [Google Scholar]
  • Asmussen S, Maybauer DM, Fraser JF, et al (2013) Extracorporeal membrane oxygenation in burn and smoke inhalation injury. Burns 39:429–35 [CrossRef] [PubMed] [Google Scholar]
  • Batchinsky AI, Burkett SE, Zanders TB, et al (2011) Comparison of airway pressure release ventilation to conventional mechanical ventilation in the early management of smoke inhalation injury in swine. Crit Care Med 39:2314–21 [CrossRef] [PubMed] [Google Scholar]
  • Soejima K, Traber LD, Schmalstieg FC, et al (2001) Role of nitric oxide in vascular permeability after combined burns and smoke inhalation injury. Am J Respir Crit Care Med 163:745–52 [CrossRef] [PubMed] [Google Scholar]
  • Toon MH, Maybauer MO, Greenwood JE, et al (2010) Management of acute smoke inhalation injury. Crit Care Resusc 12:53–61 [PubMed] [Google Scholar]
  • Lange M, Hamahata A, Traber DL, et al (2011) Preclinical evaluation of epinephrine nebulization to reduce airway hyperemia and improve oxygenation after smoke inhalation injury. Crit Care Med 39:718–24 [CrossRef] [PubMed] [Google Scholar]
  • Yamamoto Y, Enkhbaatar P, Sousse LE, et al (2012) Nebulization with γ-tocopherol ameliorates acute lung injury after burn and smoke inhalation in the ovine model. Shock 37:408–14 [CrossRef] [PubMed] [Google Scholar]
  • Nieman GF, Clark WR, Hakim T (1991) Methylprednisone does not protect the lung from inhalation injury. Burns 17:384–90 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.