Free Access
Issue
Réanimation
Volume 24, Number 6, Novembre 2015
Néphrologie et métabolisme
Page(s) 648 - 653
Section Mise Au Point / Update
DOI https://doi.org/10.1007/s13546-015-1112-4
Published online 23 September 2015
  • Schrier RW, Wang W, Poole B, Mitra A (2004) Acute renal failure: definitions, diagnosis, pathogenesis, and therapy. J Clin Invest 114:5–14 [CrossRef] [PubMed] [Google Scholar]
  • Lameire N, Van Biesen W, Vanholder R (2005) Acute renal failure. Lancet 365:417–30 [CrossRef] [PubMed] [Google Scholar]
  • Kellum JA, Lameire N, for the KDIGO AKI Guideline Work Group (2013) Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care Lond Engl 17:204 [CrossRef] [PubMed] [Google Scholar]
  • Schetz M, Darmon M (2015) Measuring acute kidney injury around the world: are we using the right thermometer (and adequately)? Intensive Care Med; doi:10.1007/s00134-015-3972-1 [Google Scholar]
  • Ad hoc Working Group of ERBP, Fliser D, Laville M, et al (2012) A European Renal Best Practice (ERBP) position statement on the Kidney Disease Improving Global Outcomes (KDIGO) clinical practice guidelines on acute kidney injury: part 1: definitions, conservative management and contrast-induced nephropathy. Nephrol Dial Transplant 27:4263–72 [CrossRef] [PubMed] [Google Scholar]
  • Clec’h C, Gonzalez F, Lautrette A, et al (2011) Multiple-center evaluation of mortality associated with acute kidney injury in critically ill patients: a competing risks analysis. Crit Care 15:R128 [CrossRef] [PubMed] [Google Scholar]
  • Thakar CV, Christianson A, Freyberg R, et al (2009) Incidence and outcomes of acute kidney injury in intensive care units: a Veterans Administration study. Crit Care Med 37:2552–8 [CrossRef] [PubMed] [Google Scholar]
  • Ostermann M, Chang R, Riyadh ICU (2008) Program Users Group. Correlation between the AKI classification and outcome. Crit Care 12:R144 [CrossRef] [PubMed] [Google Scholar]
  • Bagshaw SM, George C, Bellomo R (2008) ANZICS Database Management Committee. A comparison of the RIFLE and AKIN criteria for acute kidney injury in critically ill patients. Nephrol Dial Transplant 23:1569–74 [CrossRef] [PubMed] [Google Scholar]
  • Joannidis M, Metnitz B, Bauer P, et al (2009) Acute kidney injury in critically ill patients classified by AKIN versus RIFLE using the SAPS 3 database. Intensive Care Med 35:1692–702 [CrossRef] [PubMed] [Google Scholar]
  • Wlodzimirow KA, Abu-Hanna A, Slabbekoorn M, et al (2012) A comparison of RIFLE with and without urine output criteria for acute kidney injury in critically ill patients. Crit Care Lond Engl 16:R200 [CrossRef] [Google Scholar]
  • Srisawat N, Sileanu FE, Murugan R, et al (2015) Variation in risk and mortality of acute kidney injury in critically ill patients: a multicenter study. Am J Nephrol 41:81–8 [CrossRef] [PubMed] [Google Scholar]
  • Prowle JR, Liu YL, Licari E, et al (2011) Oliguria as predictive biomarker of acute kidney injury in critically ill patients. Crit Care Lond Engl 15:R172 [CrossRef] [PubMed] [Google Scholar]
  • Legrand M, Jacquemod A, Gayat E, et al (2015) Failure of renal biomarkers to predict worsening renal function in high-risk patients presenting with oliguria. Intensive Care Med 41:68–76 [CrossRef] [PubMed] [Google Scholar]
  • Siew ED, Matheny ME, Ikizler TA, et al (2010) Commonly used surrogates for baseline renal function can impact acute kidney injury classification and prognosis. Kidney Int 77:536–42 [CrossRef] [PubMed] [Google Scholar]
  • Schetz M, Gunst J, Van den Berghe G (2014) The impact of using estimated GFR versus creatinine clearance on the evaluation of recovery from acute kidney injury in the ICU. Intensive Care Med 40:1709–17 [CrossRef] [PubMed] [Google Scholar]
  • Bagshaw SM, Uchino S, Cruz D, et al (2009) Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators. A comparison of observed versus estimated baseline creatinine for determination of RIFLE class in patients with acute kidney injury. Nephrol Dial Transplant 24:2739–44 [CrossRef] [PubMed] [Google Scholar]
  • Závada J, Hoste E, Cartin-Ceba R, et al (2010) A comparison of three methods to estimate baseline creatinine for RIFLE classification. Nephrol Dial Transplant 25:3911–8 [CrossRef] [PubMed] [Google Scholar]
  • Solomon AW, Kirwan CJ, Alexander NDE, et al (2010) Prospective Analysis of Renal Compensation for Hypohydration in Exhausted Doctors (PARCHED) Investigators. Urine output on an intensive care unit: case-control study. BMJ 341:c6761 [CrossRef] [PubMed] [Google Scholar]
  • Waikar SS, Bonventre JV (2009) Creatinine kinetics and the definition of acute kidney injury. J Am Soc Nephrol 20:672–9 [CrossRef] [PubMed] [Google Scholar]
  • Reineck HJ, O’Connor GJ, Lifschitz MD, Stein JH (1980) Sequential studies on the pathophysiology of glycerol-induced acute renal failure. J Lab Clin Med 96:356–62 [PubMed] [Google Scholar]
  • Bywaters EG, Beall D (1998) Crush injuries with impairment of renal function. 1941. J Am Soc Nephrol 9:322–32 [PubMed] [Google Scholar]
  • Dible JH, Bull GM, Darmady EM (1950) Acute tubular necrosis. Br Med J 1:1262–4 [PubMed] [Google Scholar]
  • Langenberg C, Bagshaw SM, May CN, Bellomo R (2008) The histopathology of septic acute kidney injury: a systematic review. Crit Care Lond Engl 12:R38 [CrossRef] [PubMed] [Google Scholar]
  • Philipponnet C, Guérin C, Canet E, et al (2013) Kidney biopsy in the critically ill patient, results of a multicentre retrospective case series. Minerva Anestesiol 79:53–61 [PubMed] [Google Scholar]
  • Augusto JF, Lassalle V, Fillatre P, et al (2012) Safety and diagnostic yield of renal biopsy in the intensive care unit. Intensive Care Med 38:1826–33 [CrossRef] [PubMed] [Google Scholar]
  • Lerolle N, Nochy D, Guérot E, et al (2010) Histopathology of septic shock induced acute kidney injury: apoptosis and leukocytic infiltration. Intensive Care Med 36:471–8 [CrossRef] [PubMed] [Google Scholar]
  • Takasu O, Gaut JP, Watanabe E, et al (2013) Mechanisms of cardiac and renal dysfunction in patients dying of sepsis. Am J Respir Crit Care Med 187:509–17 [CrossRef] [PubMed] [Google Scholar]
  • Langenberg C, Gobe G, Hood S, et al (2014) Renal histopathology during experimental septic acute kidney injury and recovery. Crit Care Med 42:e58–67 [CrossRef] [PubMed] [Google Scholar]
  • Miller TR, Anderson RJ, Linas SL, et al (1978) Urinary diagnostic indices in acute renal failure: a prospective study. Ann Intern Med 89:47–50 [CrossRef] [PubMed] [Google Scholar]
  • Espinel CH (1976) The FENa test. Use in the differential diagnosis of acute renal failure. JAMA 236:579–81 [CrossRef] [PubMed] [Google Scholar]
  • Carvounis CP, Nisar S, Guro-Razuman S (2002) Significance of the fractional excretion of urea in the differential diagnosis of acute renal failure. Kidney Int 62:2223–9 [CrossRef] [PubMed] [Google Scholar]
  • Perinel S, Vincent F, Lautrette A, et al (2015) Transient and persistent acute kidney injury and the risk of hospital mortality in critically ill patients: results of a multicenter cohort study. Crit Care Med 43:e269–e75 [CrossRef] [PubMed] [Google Scholar]
  • Darmon M, Vincent F, Dellamonica J, et al (2011) Diagnostic performance of fractional excretion of urea in the evaluation of critically ill patients with acute kidney injury: a multicenter cohort study. Crit Care Lond Engl 15:R178 [CrossRef] [PubMed] [Google Scholar]
  • Pons B, Lautrette A, Oziel J, et al (2013) Diagnostic accuracy of early urinary index changes in differentiating transient from persistent acute kidney injury in critically ill patients: multicenter cohort study. Crit Care Lond Engl 17:R56 [CrossRef] [PubMed] [Google Scholar]
  • Dewitte A, Biais M, Petit L, et al (2012) Fractional excretion of urea as a diagnostic index in acute kidney injury in intensive care patients. J Crit Care 27:505–10 [CrossRef] [PubMed] [Google Scholar]
  • Vanmassenhove J, Glorieux G, Hoste E, et al (2013) Urinary output and fractional excretion of sodium and urea as indicators of transient versus intrinsic acute kidney injury during early sepsis. Crit Care Lond Engl 17:R234 [CrossRef] [Google Scholar]
  • Vaidya VS, Ozer JS, Dieterle F, et al (2010) Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat Biotechnol 28:478–85 [CrossRef] [PubMed] [Google Scholar]
  • Nejat M, Pickering JW, Devarajan P, et al (2012) Some biomarkers of acute kidney injury are increased in pre-renal acute injury. Kidney Int doi:10.1038/ki.2012.23 [Google Scholar]
  • Molitoris BA (2014) Therapeutic translation in acute kidney injury: the epithelial/endothelial axis. J Clin Invest 124:2355–63 [CrossRef] [PubMed] [Google Scholar]
  • Uchino S, Bellomo R, Bagshaw SM, Goldsmith D (2010) Transient azotaemia is associated with a high risk of death in hospitalized patients. Nephrol Dial Transplant 25:1833–9 [CrossRef] [PubMed] [Google Scholar]
  • Waikar SS, Betensky RA, Emerson SC, Bonventre JV (2012) Imperfect gold standards for kidney injury biomarker evaluation. J Am Soc Nephrol 23:13–21 [CrossRef] [PubMed] [Google Scholar]
  • Gaudry S, Ricard JD, Leclaire C, et al (2014) Acute kidney injury in critical care: Experience of a conservative strategy. J Crit Care 29:1022–7 [CrossRef] [PubMed] [Google Scholar]
  • Vaara ST, Reinikainen M, Wald R, et al (2014) Timing of RRT Based on the Presence of Conventional Indications. Clin J Am Soc Nephrol 9:1577–85 [CrossRef] [PubMed] [Google Scholar]
  • Karvellas CJ, Farhat MR, Sajjad I, et al (2011) A comparison of early versus late initiation of renal replacement therapy in critically ill patients with acute kidney injury: a systematic review and meta-analysis. Crit Care Lond Engl 15:R72 [CrossRef] [PubMed] [Google Scholar]
  • Bellomo R, Bagshaw S, Langenberg C, Ronco C (2007) Pre-renal azotemia: a flawed paradigm in critically ill septic patients? Contrib Nephrol 156:1–9 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.