Free Access
Volume 24, Janvier 2015
Page(s) S406 - S412
Section Session Thématique
Published online 12 February 2016
  • Rossaint R, Bouillon B, Cemy V, et al (2013) The STOP the Bleeding Campaign. Crit Care 17:136 [CrossRef] [PubMed] [Google Scholar]
  • Spahn DR, Bouillon B, Cerny V, et al (2013) Management of bleeding and coagulopathy following major trauma: an updated European guideline. Crit care 17:R76 [Google Scholar]
  • Schadt JC, Ludbrook J (1991) Hemodynamic and neurohumoral responses to acute hypovolemia in conscious mammals. American J Physiol 260:305–318 [Google Scholar]
  • Adamicza A, Tarnoky K, Nagy S (1980) Effects of previous repeated bleedings on the response of plasma epinephrine and norepinephrine levels of conscious dogs in hemorrhagic shock. Circ Shock 7:251–263 [PubMed] [Google Scholar]
  • Jacobsohn E, Chorn R, O’Connor M (1997) The role of the vasculature in regulating venous return and cardiac output: historical and graphical approach. Canadian J Anaesth 44:849–867 [CrossRef] [Google Scholar]
  • Dumans-Nizard V, Nizard J, Payen D, et al (2006) Redistribution of cardiac output during hemorrhagic shock in sheep. Crit Care Med 34:1147–1151 [CrossRef] [PubMed] [Google Scholar]
  • Barriot P, Riou B (1987) Hemorrhagic shock with paradoxical bradycardia. Intensive Care Med 13:203–207 [CrossRef] [PubMed] [Google Scholar]
  • Schumacker PT, Cain SM (1987) The concept of a critical oxygen delivery. Intensive Care Med 13:223–229 [CrossRef] [PubMed] [Google Scholar]
  • Arai AE, Grauer SE, Anselone CG, et al (1995) Metabolic adaptation to a gradual reduction in myocardial blood flow. Circulation 92:244–252 [CrossRef] [PubMed] [Google Scholar]
  • Ferrari R (1994) Oxygen-free radicals at myocardial level: effects of ischaemia and reperfusion. Adv Exp Med Biol 366:99–111 [CrossRef] [PubMed] [Google Scholar]
  • Li C, Jackson RM (2002) Reactive species mechanisms of cellular hypoxia-reoxygenation injury. Am J Physiol Cell Physiol 282:227–241 [CrossRef] [Google Scholar]
  • Terada LS (2002) Oxidative stress and endothelial activation. Crit Care Med 30:S186–S191 [CrossRef] [PubMed] [Google Scholar]
  • Dalibon N, Schlumberger S, Saada M, et al (1999) Haemodynamic assessment of hypovolaemia under general anaesthesia in pigs submitted to graded haemorrhage and retransfusion. Brit J Anaesth 82:97–103 [CrossRef] [Google Scholar]
  • Smail N, Messiah A, Edouard A, et al (1995) Role of systemic inflammatory response syndrome and infection in the occurrence of early multiple organ dysfunction syndrome following severe trauma. Intensive Care Med 21:813–816 [CrossRef] [PubMed] [Google Scholar]
  • Smail N, Descorps Declere A, Duranteau J, et al (1996) Left ventricular function after severe trauma. Intensive Care Med 22:439–442 [CrossRef] [PubMed] [Google Scholar]
  • Levi M, de Jonge E, van der Poll T, et al (1999) Disseminated intravascular coagulation. Thrombosis Haemostasis 82:695–705 [Google Scholar]
  • Villarroel JP, Guan Y, Werlin E, et al (2013) Hemorrhagic shock and resuscitation are associated with peripheral blood mononuclear cell mitochondrial dysfunction and immunosuppression. J Trauma Acute Care Surg 75:24–31 [CrossRef] [PubMed] [Google Scholar]
  • Berg RD (1992) Bacterial translocation from the gastrointestinal tract. J Med 23:217–244 [PubMed] [Google Scholar]
  • Quaknine-Orlando B, Samama CM, Riou B, et al (1999) Role of the hematocrit in a rabbit model of arterial thrombosis and bleeding. Anesthesiology 90:1454–1461 [CrossRef] [PubMed] [Google Scholar]
  • Vivien B, Langeron O, Morell E, et al (2005) Early hypocalcemia in severe trauma. Crit Care Med 33:1946–1952 [CrossRef] [PubMed] [Google Scholar]
  • Cohan P, Wang C, McArthur DL, et al (2005) Acute secondary adrenal insufficiency after traumatic brain injury: a prospective study. Critical Care Med 33:2358–2366 [Google Scholar]
  • Hoen S, Asehnoune K, Brailly-Tabard S, et al (2002) Cortisol response to corticotropin stimulation in trauma patients: influence of hemorrhagic shock. Anesthesiology 97:807–813 [CrossRef] [PubMed] [Google Scholar]
  • Roquilly A, Mahe PJ, Seguin P, et al (2011) Hydrocortisone therapy for patients with multiple trauma: the randomized controlled HYPOLYTE study. JAMA 305:1201–1209 [CrossRef] [PubMed] [Google Scholar]
  • Sondeen JL, Coppes VG, Holcomb JB (2003) Blood pressure at which rebleeding occurs after resuscitation in swine with aortic injury. J Trauma 54:110–117 [CrossRef] [Google Scholar]
  • Li T, Zhu Y, Hu Y, et al (2011) Ideal permissive hypotension to resuscitate uncontrolled hemorrhagic shock and the tolerance time in rats. Anesthesiology 114:111–119 [CrossRef] [PubMed] [Google Scholar]
  • Bickell WH, Wall MJ Jr, Pepe PE, et al (1994) Immediate versus delayed fluid resuscitation for hypotensive patients with penetrating torso injuries. N Engl J Med 331:1105–1109 [CrossRef] [PubMed] [Google Scholar]
  • Morrison CA, Carrick MM, Norman MA, et al (2011) Hypotensive resuscitation strategy reduces transfusion requirements and severe postoperative coagulopathy in trauma patients with hemorrhagic shock: preliminary results of a randomized controlled trial. J Trauma 70:652–663. [CrossRef] [PubMed] [Google Scholar]
  • Weiss G, Lison S, Spannagl M, et al (2010) Expressiveness of global coagulation parameters in dilutional coagulopathy. Br J Anaesth 105:429–436 [CrossRef] [PubMed] [Google Scholar]
  • Soreide E, Deakin CD (2005) Pre-hospital fluid therapy in the critically injured patient–a clinical update. Injury 36:1001–1010 [CrossRef] [PubMed] [Google Scholar]
  • Choi PT, Yip G, Quinonez LG, et al (1999) Crystalloids vs. colloids in fluid resuscitation: a systematic review. Crit Care Med 27:200–210 [CrossRef] [PubMed] [Google Scholar]
  • Gruen RL, Brohi K, Schreiber M, et al (2012) Haemorrhage control in severely injured patients. Lancet 380:1099–1108 [CrossRef] [PubMed] [Google Scholar]
  • Annane D, Chevret S (2014) Mortality in patients with hypovolemic shock treated with colloids or crystalloids–reply. JAMA 311:1069–1070 [CrossRef] [PubMed] [Google Scholar]
  • Madigan MC, Kemp CD, Johnson JC, et al (2008) Secondary abdominal compartment syndrome after severe extremity injury: are early, aggressive fluid resuscitation strategies to blame?. J Trauma 64:280–285 [CrossRef] [PubMed] [Google Scholar]
  • Handy JM, Soni N (2008) Physiological effects of hyperchloraemia and acidosis. Br J Anaesth 101:141–150 [CrossRef] [PubMed] [Google Scholar]
  • James MF, Michell WL, Joubert IA, et al (2011) Resuscitation with hydroxyethyl starch improves renal function and lactate clearance in penetrating trauma in a randomized controlled study: the FIRST trial (Fluids in Resuscitation of Severe Trauma). Br J Anaesth 107:693–702 [CrossRef] [PubMed] [Google Scholar]
  • Kashy BK, Podolyak A, Makarova N, et al (2014) Effect of Hydroxyethyl Starch on Postoperative Kidney Function in Patients Having Noncardiac Surgery. Anesthesiology 121:730–739 [CrossRef] [PubMed] [Google Scholar]
  • Mutter TC, Ruth CA, Dart AB (2013) Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev 7:CD007594 [PubMed] [Google Scholar]
  • Myburgh JA, Finfer S, Bellomo R, et al (2012) Hydroxyethyl starch or saline for fluid resuscitation in intensive care. New Engl J Med 367:1901–1911 [Google Scholar]
  • Skhirtladze K, Base EM, Lassnigg A, et al (2014) Comparison of the effects of albumin 5%, hydroxyethyl starch 130/0.4 6%, and Ringer’s lactate on blood loss and coagulation after cardiac surgery. Brit J Anaesth 112:255–264 [CrossRef] [Google Scholar]
  • Hartog CS, Reuter D, Loesche W, et al (2011) Influence of hydroxyethyl starch (HES) 130/0.4 on hemostasis as measured by viscoelastic device analysis: a systematic review. Intensive Care Med 37:1725–1737 [CrossRef] [PubMed] [Google Scholar]
  • Junger WG, Rhind SG, Rizoli SB, et al (2013) Prehospital hypertonic saline resuscitation attenuates the activation and promotes apoptosis of neutrophils in patients with severe traumatic brain injury. Shock 40:366–374 [CrossRef] [PubMed] [Google Scholar]
  • Gurfinkel V, Poggetti RS, Fontes B, et al (2003) Hypertonic saline improves tissue oxygenation and reduces systemic and pulmonary inflammatory response caused by hemorrhagic shock. J Trauma 54:1137–1145 [CrossRef] [PubMed] [Google Scholar]
  • Bulger EM, May S, Kerby JD, et al (2011) Out-of-hospital hypertonic resuscitation after traumatic hypovolemic shock: a randomized, placebo controlled trial. Ann Surg 253:431–441 [CrossRef] [PubMed] [Google Scholar]
  • Mahler SA, Conrad SA, Wang H, et al (2011) Resuscitation with balanced electrolyte solution prevents hyperchloremic metabolic acidosis in patients with diabetic ketoacidosis. American J Emerg Med 29:670–674 [CrossRef] [Google Scholar]
  • Yunos NM, Kim IB, Bellomo R, et al (2011) The biochemical effects of restricting chloride-rich fluids in intensive care. Crit Care Med 39:2419–2424 [CrossRef] [PubMed] [Google Scholar]
  • Shaw AD, Bagshaw SM, Goldstein SL, et al (2012) Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to Plasma-Lyte. Ann Surg 255:821–829 [CrossRef] [PubMed] [Google Scholar]
  • Perner A, Haase N, Guttormsen AB, et al (2012) Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. New Engl J Med 367:124–134 [Google Scholar]
  • Recommandations sur la réanimation du choc hémorragique, Recommandations formalisées d’expert SFAR SRLF SFMU GEHT. Décembre 2014 [Google Scholar]
  • David JS, Spann C, Marcotte G, et al (2013) Haemorrhagic shock, therapeutic management. Ann Fra Anesth Reanim 32:497–503 [CrossRef] [PubMed] [Google Scholar]
  • Poloujadoff MP, Borron SW, Amathieu R, et al (2007) Improved survival after resuscitation with norepinephrine in a murine model of uncontrolled hemorrhagic shock. Anesthesiology 107:591–596 [CrossRef] [PubMed] [Google Scholar]
  • Vatner SF, Braunwald E (1975) Cardiovascular control mechanisms in the conscious state. New Engl J Med 293:970–976 [Google Scholar]
  • Meier J, Pape A, Loniewska D, et al (2007) Norepinephrine increases tolerance to acute anemia. Crit Care Med 35:1484–1492 [CrossRef] [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.